Skip to main content
Top
Published in: Experimental & Translational Stroke Medicine 1/2014

Open Access 01-12-2014 | Research

A 2 × 2 factorial design for the combination therapy of minocycline and remote ischemic perconditioning: efficacy in a preclinical trial in murine thromboembolic stroke model

Authors: Md Nasrul Hoda, Susan C Fagan, Mohammad B Khan, Kumar Vaibhav, Aizaz Chaudhary, Phillip Wang, Krishnan M Dhandapani, Jennifer L Waller, David C Hess

Published in: Experimental & Translational Stroke Medicine | Issue 1/2014

Login to get access

Abstract

Background

After the failure of so many drugs and therapies for acute ischemic stroke, innovative approaches are needed to develop new treatments. One promising strategy is to test combinations of agents in the pre-hospital setting prior to the administration of intravenous tissue plasminogen activator (IV-tPA) and/ or the use of mechanical reperfusion devices in the hospital.

Methods

We performed a 2 × 2 factorial design preclinical trial where we tested minocycline (MINO), remote ischemic perconditioning (RIPerC) and their combination treatment in a thromboembolic clot model of stroke in mice, without IV-tPA or later treated with IV-tPA at 4 hours post-stroke. Cerebral blood flow (CBF) was measured by laser speckle contrast imaging (LSCI), behavioral outcomes as neurological deficit score (NDS) and adhesive tape removal test, and infarct size measurement were performed at 48 hours post-stroke. Mice within the experimental sets were randomized for the different treatments, and all outcome measures were blinded.

Results

RIPerC significantly improved CBF as measured by LSCI in both with and without tPA treated mice (P < 0.001). MINO and RIPerC treatment were effective alone at reducing infarct size (p < 0.0001) and improving short-term functional outcomes (p < 0.001) in the tPA and non-tPA treated animals. The combination treatment of MINO and RIPerC significantly reduced the infarct size greater than either intervention alone (p < 0.05). There were trends in favor of improving functional outcomes after combination treatment of MINO and RIPerC; however combination treatment group was not significantly different than the individual treatments of MINO and RIPerC. There was no “statistical” interaction between minocycline and RIPerC treatments indicating that the effects of RIPerC and MINO were additive and not synergistic on the outcome measures.

Conclusion

In the future, combining these two safe and low cost interventions in the ambulance has the potential to “freeze” the penumbra and improve outcomes in stroke patients. This pre-clinical 2 × 2 design can be easily translated into a pre-hospital clinical trial.
Appendix
Available only for authorised users
Literature
1.
go back to reference Albers GW, Goldstein LB, Hess DC, Wechsler LR, Furie KL, Gorelick PB, Hurn P, Liebeskind DS, Nogueira RG, Saver JL, STAIR VII Consortium: Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 2011,42(9):2645–2650.PubMedCrossRef Albers GW, Goldstein LB, Hess DC, Wechsler LR, Furie KL, Gorelick PB, Hurn P, Liebeskind DS, Nogueira RG, Saver JL, STAIR VII Consortium: Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 2011,42(9):2645–2650.PubMedCrossRef
2.
go back to reference Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M: Prehospital stroke care: new prospects for treatment and clinical research. Neurology 2013,81(5):501–508.PubMedCentralPubMedCrossRef Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M: Prehospital stroke care: new prospects for treatment and clinical research. Neurology 2013,81(5):501–508.PubMedCentralPubMedCrossRef
3.
go back to reference Saver JL, Starkman S, Eckstein M, Stratton S, Pratt F, Hamilton S, Conwit R, Liebeskind DS, Sung G, Sanossian N, FAST-MAG Investigators and Coordinators: Methodology of the Field Administration of Stroke Therapy - Magnesium (FAST-MAG) phase 3 trial: part 2 - prehospital study methods. Int J Stroke 2014,9(2):220–225.PubMedCrossRef Saver JL, Starkman S, Eckstein M, Stratton S, Pratt F, Hamilton S, Conwit R, Liebeskind DS, Sung G, Sanossian N, FAST-MAG Investigators and Coordinators: Methodology of the Field Administration of Stroke Therapy - Magnesium (FAST-MAG) phase 3 trial: part 2 - prehospital study methods. Int J Stroke 2014,9(2):220–225.PubMedCrossRef
4.
go back to reference Hess DC, Fagan SC: Repurposing an old drug to improve the use and safety of tissue plasminogen activator for acute ischemic stroke: minocycline. Pharmacotherapy 2010,30(7 Pt 2):55S-61S.PubMedCentralPubMedCrossRef Hess DC, Fagan SC: Repurposing an old drug to improve the use and safety of tissue plasminogen activator for acute ischemic stroke: minocycline. Pharmacotherapy 2010,30(7 Pt 2):55S-61S.PubMedCentralPubMedCrossRef
5.
go back to reference Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M: Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 2010,375(9716):727–734.PubMedCrossRef Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M: Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 2010,375(9716):727–734.PubMedCrossRef
6.
go back to reference Hougaard KD, Hjort N, Zeidler D, Sorensen L, Norgaard A, Hansen TM, von Weitzel-Mudersbach P, Simonsen CZ, Damgaard D, Gottrup H, Svendsen K, Rasmussen PV, Ribe LR, Mikkelsen IK, Nagenthiraja K, Cho TH, Redington AN, Botker HE, Ostergaard L, Mouridsen K, Andersen G: Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 2014,45(1):159–167.PubMedCrossRef Hougaard KD, Hjort N, Zeidler D, Sorensen L, Norgaard A, Hansen TM, von Weitzel-Mudersbach P, Simonsen CZ, Damgaard D, Gottrup H, Svendsen K, Rasmussen PV, Ribe LR, Mikkelsen IK, Nagenthiraja K, Cho TH, Redington AN, Botker HE, Ostergaard L, Mouridsen K, Andersen G: Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 2014,45(1):159–167.PubMedCrossRef
7.
go back to reference Geng X, Ren C, Wang T, Fu P, Luo Y, Liu X, Yan F, Ling F, Jia J, Du H, Ji X, Ding Y: Effect of remote ischemic postconditioning on an intracerebral hemorrhage stroke model in rats. Neurol Res 2012,34(2):143–148.PubMed Geng X, Ren C, Wang T, Fu P, Luo Y, Liu X, Yan F, Ling F, Jia J, Du H, Ji X, Ding Y: Effect of remote ischemic postconditioning on an intracerebral hemorrhage stroke model in rats. Neurol Res 2012,34(2):143–148.PubMed
8.
go back to reference Koch S, Katsnelson M, Dong C, Perez-Pinzon M: Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke 2011,42(5):1387–1391.PubMedCentralPubMedCrossRef Koch S, Katsnelson M, Dong C, Perez-Pinzon M: Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke 2011,42(5):1387–1391.PubMedCentralPubMedCrossRef
9.
go back to reference Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P: Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 2014. Epub ahead of print (PMID: 25072112) Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P: Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 2014. Epub ahead of print (PMID: 25072112)
10.
go back to reference Mayor F, Bilgin-Freiert A, Connolly M, Katsnelson M, Dusick JR, Vespa P, Koch S, Gonzalez NR: Effects of remote ischemic preconditioning on the coagulation profile of patients with aneurysmal subarachnoid hemorrhage: a case–control study. Neurosurgery 2013,73(5):808–815. discussion 815PubMedCrossRef Mayor F, Bilgin-Freiert A, Connolly M, Katsnelson M, Dusick JR, Vespa P, Koch S, Gonzalez NR: Effects of remote ischemic preconditioning on the coagulation profile of patients with aneurysmal subarachnoid hemorrhage: a case–control study. Neurosurgery 2013,73(5):808–815. discussion 815PubMedCrossRef
11.
go back to reference Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008,39(12):3372–3377.PubMedCentralPubMedCrossRef Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008,39(12):3372–3377.PubMedCentralPubMedCrossRef
12.
go back to reference Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC: Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 2012,43(10):2794–2799.PubMedCentralPubMedCrossRef Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC: Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 2012,43(10):2794–2799.PubMedCentralPubMedCrossRef
13.
go back to reference Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, Zaidi SK, Fagan SC, Hess DC: Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res 2014,5(4):484–490.PubMedCentralPubMedCrossRef Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, Zaidi SK, Fagan SC, Hess DC: Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res 2014,5(4):484–490.PubMedCentralPubMedCrossRef
14.
go back to reference Fisher M, Hanley DF, Howard G, Jauch EC, Warach S, STAIR Group: Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes. Stroke 2007,38(2):245–248.PubMedCrossRef Fisher M, Hanley DF, Howard G, Jauch EC, Warach S, STAIR Group: Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes. Stroke 2007,38(2):245–248.PubMedCrossRef
15.
go back to reference Hoda MN, Li W, Ahmad A, Ogbi S, Zemskova MA, Johnson MH, Ergul A, Hill WD, Hess DC, Sazonova IY: Sex-independent neuroprotection with minocycline after experimental thromboembolic stroke. Exp Transl Stroke Med 2011,3(1):16.PubMedCentralPubMedCrossRef Hoda MN, Li W, Ahmad A, Ogbi S, Zemskova MA, Johnson MH, Ergul A, Hill WD, Hess DC, Sazonova IY: Sex-independent neuroprotection with minocycline after experimental thromboembolic stroke. Exp Transl Stroke Med 2011,3(1):16.PubMedCentralPubMedCrossRef
16.
17.
18.
go back to reference Hess DC, Hoda MN, Bhatia K: Remote limb perconditioning [corrected] and postconditioning: will it translate into a promising treatment for acute stroke? Stroke 2013,44(4):1191–1197.PubMedCrossRef Hess DC, Hoda MN, Bhatia K: Remote limb perconditioning [corrected] and postconditioning: will it translate into a promising treatment for acute stroke? Stroke 2013,44(4):1191–1197.PubMedCrossRef
19.
go back to reference Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006, 7: 56.PubMedCentralPubMedCrossRef Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006, 7: 56.PubMedCentralPubMedCrossRef
20.
go back to reference Alano CC, Kauppinen TM, Valls AV, Swanson RA: Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A 2006,103(25):9685–9690.PubMedCentralPubMedCrossRef Alano CC, Kauppinen TM, Valls AV, Swanson RA: Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A 2006,103(25):9685–9690.PubMedCentralPubMedCrossRef
21.
go back to reference Schildknecht S, Pape R, Muller N, Robotta M, Marquardt A, Burkle A, Drescher M, Leist M: Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2011,286(7):4991–5002.PubMedCentralPubMedCrossRef Schildknecht S, Pape R, Muller N, Robotta M, Marquardt A, Burkle A, Drescher M, Leist M: Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2011,286(7):4991–5002.PubMedCentralPubMedCrossRef
22.
go back to reference Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG: Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 2006,37(4):1087–1093.PubMedCrossRef Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG: Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 2006,37(4):1087–1093.PubMedCrossRef
23.
go back to reference Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 1999,96(23):13496–13500.PubMedCentralPubMedCrossRef Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 1999,96(23):13496–13500.PubMedCentralPubMedCrossRef
Metadata
Title
A 2 × 2 factorial design for the combination therapy of minocycline and remote ischemic perconditioning: efficacy in a preclinical trial in murine thromboembolic stroke model
Authors
Md Nasrul Hoda
Susan C Fagan
Mohammad B Khan
Kumar Vaibhav
Aizaz Chaudhary
Phillip Wang
Krishnan M Dhandapani
Jennifer L Waller
David C Hess
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Experimental & Translational Stroke Medicine / Issue 1/2014
Electronic ISSN: 2040-7378
DOI
https://doi.org/10.1186/2040-7378-6-10

Other articles of this Issue 1/2014

Experimental & Translational Stroke Medicine 1/2014 Go to the issue