Skip to main content
Top
Published in: The Ultrasound Journal 1/2012

Open Access 01-12-2012 | Original article

Inferior vena cava displacement during respirophasic ultrasound imaging

Authors: David J Blehar, Dana Resop, Benjamin Chin, Matthew Dayno, Romolo Gaspari

Published in: The Ultrasound Journal | Issue 1/2012

Login to get access

Abstract

Background

Ultrasound measurement of dynamic changes in inferior vena cava (IVC) diameter can be used to assess intravascular volume status in critically ill patients, but published studies vary in accuracy as well as recommended diagnostic cutoffs. Part of this variability may be related to movements of the vessel relative to the transducer during the respiratory cycle which results in unintended comparison of different points of the IVC at end expiration and inspiration, possibly introducing error related to variations in normal anatomy. The objective of this study was to quantify both craniocaudal and mediolateral movements of the IVC as well as the vessel's axis of collapse during respirophasic ultrasound imaging.

Methods

Patients were enrolled from a single urban academic emergency department with ultrasound examinations performed by sonographers experienced in IVC ultrasound. The IVC was imaged from the level of the diaphragm along its entire course to its bifurcation with diameter measurements and respiratory collapse measured at a single point inferior to the confluence of the hepatic veins. While imaging the vessel in its long axis, movement in a craniocaudal direction during respiration was measured by tracking the movement of a fixed point across the field of view. Likewise, imaging the short axis of the IVC allowed for measurement of mediolateral displacement as well as the vessel's angle of collapse relative to vertical.

Results

Seventy patients were enrolled over a 6-month period. The average diameter of the IVC was 13.8 mm (95% CI 8.41 to 19.2 mm), with a mean respiratory collapse of 34.8% (95% CI 19.5% to 50.2%). Movement of the vessel relative to the transducer occurred in both mediolateral and craniocaudal directions. Movement was greater in the craniocaudal direction at 21.7 mm compared to the mediolateral movement at 3.9 mm (p < 0.001). Angle of collapse assessed in the transverse plane averaged 115° (95% CI 112° to 118°).

Conclusions

Movement of the IVC occurs in both mediolateral and craniocaudal directions during respirophasic ultrasound imaging. Further, collapse of the vessel occurs not at true vertical (90°) but 25° off this axis. Technical approach to IVC assessment needs to be tailored to account for these factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT: Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007,20(7):857–61. 10.1016/j.echo.2007.01.005PubMedCrossRef Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT: Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007,20(7):857–61. 10.1016/j.echo.2007.01.005PubMedCrossRef
2.
go back to reference Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC: Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med 2010,55(3):290–5. 10.1016/j.annemergmed.2009.04.021PubMedCrossRef Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC: Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med 2010,55(3):290–5. 10.1016/j.annemergmed.2009.04.021PubMedCrossRef
3.
go back to reference Schefold JC, Storm C, Bercker S, Pschowski R, Oppert M, Kruger A, Hasper D: Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med 2010,38(5):632–7. 10.1016/j.jemermed.2007.11.027PubMedCrossRef Schefold JC, Storm C, Bercker S, Pschowski R, Oppert M, Kruger A, Hasper D: Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med 2010,38(5):632–7. 10.1016/j.jemermed.2007.11.027PubMedCrossRef
4.
go back to reference Stawicki SP, Braslow BM, Panebianco NL, Kirkpatrick JN, Gracias VH, Hayden GE, Dean AJ: Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg 2009,209(1):55–61. 10.1016/j.jamcollsurg.2009.02.062PubMedCrossRef Stawicki SP, Braslow BM, Panebianco NL, Kirkpatrick JN, Gracias VH, Hayden GE, Dean AJ: Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg 2009,209(1):55–61. 10.1016/j.jamcollsurg.2009.02.062PubMedCrossRef
5.
go back to reference Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, Vieillard-Baron A: Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 2004,30(9):1740–6.PubMed Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, Vieillard-Baron A: Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 2004,30(9):1740–6.PubMed
6.
go back to reference Feissel M, Michard F, Faller JP, Teboul JL: The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 2004,30(9):1834–7.PubMedCrossRef Feissel M, Michard F, Faller JP, Teboul JL: The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 2004,30(9):1834–7.PubMedCrossRef
7.
go back to reference Blehar DJ, Dickman E, Gaspari R: Identification of congestive heart failure via respiratory variation of inferior vena cava diameter. Am J Emerg Med 2009,27(1):71–5. 10.1016/j.ajem.2008.01.002PubMedCrossRef Blehar DJ, Dickman E, Gaspari R: Identification of congestive heart failure via respiratory variation of inferior vena cava diameter. Am J Emerg Med 2009,27(1):71–5. 10.1016/j.ajem.2008.01.002PubMedCrossRef
8.
go back to reference Iwamoto Y, Tamai A, Kohno K, Masutani S, Okada N, Senzaki H: Usefulness of respiratory variation of inferior vena cava diameter for estimation of elevated central venous pressure in children with cardiovascular disease. Circ J 2011,75(5):1209–14. 10.1253/circj.CJ-10-0690PubMedCrossRef Iwamoto Y, Tamai A, Kohno K, Masutani S, Okada N, Senzaki H: Usefulness of respiratory variation of inferior vena cava diameter for estimation of elevated central venous pressure in children with cardiovascular disease. Circ J 2011,75(5):1209–14. 10.1253/circj.CJ-10-0690PubMedCrossRef
9.
go back to reference Wallace DJ, Allison M, Stone MB: Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med 2010,17(1):96–9. 10.1111/j.1553-2712.2009.00627.xPubMedCrossRef Wallace DJ, Allison M, Stone MB: Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med 2010,17(1):96–9. 10.1111/j.1553-2712.2009.00627.xPubMedCrossRef
10.
go back to reference Brennan JM, Ronan A, Goonewardena S, Blair JE, Hammes M, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT: Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol 2006,1(4):749–53. 10.2215/CJN.00310106PubMedCrossRef Brennan JM, Ronan A, Goonewardena S, Blair JE, Hammes M, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT: Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol 2006,1(4):749–53. 10.2215/CJN.00310106PubMedCrossRef
11.
go back to reference Fields JM, Lee PA, Jenq KY, Mark DG, Panebianco NL, Dean AJ: The interrater reliability of inferior vena cava ultrasound by bedside clinician sonographers in emergency department patients. Acad Emerg Med 2011,18(1):98–101. 10.1111/j.1553-2712.2010.00952.xPubMedCrossRef Fields JM, Lee PA, Jenq KY, Mark DG, Panebianco NL, Dean AJ: The interrater reliability of inferior vena cava ultrasound by bedside clinician sonographers in emergency department patients. Acad Emerg Med 2011,18(1):98–101. 10.1111/j.1553-2712.2010.00952.xPubMedCrossRef
12.
go back to reference Grant E, Rendano F, Sevinc E, Gammelgaard J, Holm HH, Gronvall S: Normal inferior vena cava: caliber changes observed by dynamic ultrasound. AJR Am J Roentgenol 1980,135(2):335–8.PubMedCrossRef Grant E, Rendano F, Sevinc E, Gammelgaard J, Holm HH, Gronvall S: Normal inferior vena cava: caliber changes observed by dynamic ultrasound. AJR Am J Roentgenol 1980,135(2):335–8.PubMedCrossRef
13.
go back to reference Kircher BJ, Himelman RB, Schiller NB: Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 1990,66(4):493–6. 10.1016/0002-9149(90)90711-9PubMedCrossRef Kircher BJ, Himelman RB, Schiller NB: Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 1990,66(4):493–6. 10.1016/0002-9149(90)90711-9PubMedCrossRef
14.
go back to reference Lyon M, Blaivas M, Brannam L: Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med 2005,23(1):45–50. 10.1016/j.ajem.2004.01.004PubMedCrossRef Lyon M, Blaivas M, Brannam L: Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med 2005,23(1):45–50. 10.1016/j.ajem.2004.01.004PubMedCrossRef
15.
go back to reference Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH: Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 1984,53(4):579–85. 10.1016/0002-9149(84)90034-1PubMedCrossRef Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH: Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 1984,53(4):579–85. 10.1016/0002-9149(84)90034-1PubMedCrossRef
16.
go back to reference Chen L, Hsiao A, Langhan M, Riera A, Santucci KA: Use of bedside ultrasound to assess degree of dehydration in children with gastroenteritis. Acad Emerg Med 2010,17(10):1042–7. 10.1111/j.1553-2712.2010.00873.xPubMedCentralPubMedCrossRef Chen L, Hsiao A, Langhan M, Riera A, Santucci KA: Use of bedside ultrasound to assess degree of dehydration in children with gastroenteritis. Acad Emerg Med 2010,17(10):1042–7. 10.1111/j.1553-2712.2010.00873.xPubMedCentralPubMedCrossRef
17.
go back to reference Murphy EH, Arko FR, Trimmer CK, Phangureh VS, Fogarty TJ, Zarins CK: Volume associated dynamic geometry and spatial orientation of the inferior vena cava. J Vasc Surg 2009,50(4):835–842. discussion 842–3 10.1016/j.jvs.2009.05.012PubMedCrossRef Murphy EH, Arko FR, Trimmer CK, Phangureh VS, Fogarty TJ, Zarins CK: Volume associated dynamic geometry and spatial orientation of the inferior vena cava. J Vasc Surg 2009,50(4):835–842. discussion 842–3 10.1016/j.jvs.2009.05.012PubMedCrossRef
Metadata
Title
Inferior vena cava displacement during respirophasic ultrasound imaging
Authors
David J Blehar
Dana Resop
Benjamin Chin
Matthew Dayno
Romolo Gaspari
Publication date
01-12-2012
Publisher
Springer Milan
Published in
The Ultrasound Journal / Issue 1/2012
Electronic ISSN: 2524-8987
DOI
https://doi.org/10.1186/2036-7902-4-18

Other articles of this Issue 1/2012

The Ultrasound Journal 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.