Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2014

Open Access 01-12-2014 | Research

Metabolic profile response to administration of epigallocatechin-3-gallate in high-fat-fed mice

Authors: Mayara Franzoi Moreno, Rachel De Laquila, Marcos Hiromu Okuda, Fábio Santos Lira, Gabriel Inácio de Morais Honorato de Souza, Cláudio Teodoro de Souza, Monica Marques Telles, Eliane Beraldi Ribeiro, Claudia Maria Oller do Nascimento, Lila Missae Oyama

Published in: Diabetology & Metabolic Syndrome | Issue 1/2014

Login to get access

Abstract

Background

Obesity is associated with increased adipose tissue and glucose intolerance. High-fat diets (HFDs) are known to induce obesity and increase proinflammatory adipokines. The consumption of green tea may improve the health of obese individuals because it contains a potent antioxidant that has effects on body weight, energy expenditure and serum cholesterol concentrations.

Methods

We examined the effects of epigallocatechin-3-gallate (EGCG) (50 mg/kg body weight per day) or saline after 30 or 60 days of treatment. Mice were distributed into four groups: 1) NS: normolipidic diet receiving saline; 2) NE: normolipidic diet receiving EGCG; 3) HFS: high-fat diet receiving saline; 4) HFE: high-fat diet receiving EGCG.

Results

We observed that administration of a HFD plus EGCG treatment for 60 days reduced delta weight, the relative weights of the mesenteric adipose tissue (MES), retroperitonial adipose tissue (RET), epididymal adipose tissue (EPI), the sum of the adipose tissues (SAT), reduced triacylglycerol (TG) and improved both high-density lipoprotein (HDL) cholesterol levels and the adiponectin/STA ratio when compared with HFS.

Conclusions

Our results suggest that the chronic administration of EGCG (60 days) promoted a significant improvement in glucose tolerance, decreased adipose tissue deposits, weight mass, TG and HDL-C only when associated with high-fat diet treatment.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Yamashita AS, Lira FS, Rosa JC, Paulino EC, Brum PC, Negrao CE, dos Santos RV, Batista ML, do Nascimento CO, Oyama LM, Seelaender M: Depot-specific modulation of adipokine levels in rat adipose tissue by diet-induced obesity: the effect of aerobic training and energy restriction. Cytokine. 2010, 52: 168-174.CrossRefPubMed Yamashita AS, Lira FS, Rosa JC, Paulino EC, Brum PC, Negrao CE, dos Santos RV, Batista ML, do Nascimento CO, Oyama LM, Seelaender M: Depot-specific modulation of adipokine levels in rat adipose tissue by diet-induced obesity: the effect of aerobic training and energy restriction. Cytokine. 2010, 52: 168-174.CrossRefPubMed
3.
go back to reference Nascimento CM O d, Ribeiro EB, Oyama LM: Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc. 2009, 81: 453-466.CrossRef Nascimento CM O d, Ribeiro EB, Oyama LM: Metabolism and secretory function of white adipose tissue: effect of dietary fat. An Acad Bras Cienc. 2009, 81: 453-466.CrossRef
4.
go back to reference Trayhurn P: Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand. 2005, 184: 285-293.CrossRefPubMed Trayhurn P: Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand. 2005, 184: 285-293.CrossRefPubMed
5.
go back to reference Lira FS, Rosa JC, Cunha CA, Ribeiro EB, do Nascimento CO, Oyama LM, Mota JF: Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3 T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 2011, 10: 37-PubMedCentralCrossRefPubMed Lira FS, Rosa JC, Cunha CA, Ribeiro EB, do Nascimento CO, Oyama LM, Mota JF: Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3 T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 2011, 10: 37-PubMedCentralCrossRefPubMed
6.
go back to reference Sae-Tan S, Grove KA, Kennett MJ, Lambert JD: (-)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food function. 2011, 2: 111-116.CrossRefPubMed Sae-Tan S, Grove KA, Kennett MJ, Lambert JD: (-)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food function. 2011, 2: 111-116.CrossRefPubMed
7.
go back to reference Klaus S, Pultz S, Thone-Reineke C, Wolfram S: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond). 2005, 29: 615-623.CrossRef Klaus S, Pultz S, Thone-Reineke C, Wolfram S: Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond). 2005, 29: 615-623.CrossRef
8.
go back to reference Thielecke F, Boschmann M: The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry. 2009, 70: 11-24.CrossRefPubMed Thielecke F, Boschmann M: The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry. 2009, 70: 11-24.CrossRefPubMed
9.
go back to reference Yang CS, Wang X, Lu G, Picinich SC: Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009, 9: 429-439.PubMedCentralCrossRefPubMed Yang CS, Wang X, Lu G, Picinich SC: Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009, 9: 429-439.PubMedCentralCrossRefPubMed
10.
go back to reference Venables MC, Hulston CJ, Cox HR, Jeukendrup AE: Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr. 2008, 87: 778-784.PubMed Venables MC, Hulston CJ, Cox HR, Jeukendrup AE: Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr. 2008, 87: 778-784.PubMed
11.
go back to reference Friedrich M, Petzke KJ, Raederstorff D, Wolfram S, Klaus S: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet. Int J Obes (Lond). 2012, 36: 735-743.CrossRef Friedrich M, Petzke KJ, Raederstorff D, Wolfram S, Klaus S: Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet. Int J Obes (Lond). 2012, 36: 735-743.CrossRef
12.
go back to reference Li Y, Zhao S, Zhang W, Zhao P, He B, Wu N, Han P: Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res Clin Pract. 2011, 93: 205-214.CrossRefPubMed Li Y, Zhao S, Zhang W, Zhao P, He B, Wu N, Han P: Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res Clin Pract. 2011, 93: 205-214.CrossRefPubMed
13.
go back to reference Reeves PG: Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997, 127: 838S-841S.PubMed Reeves PG: Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997, 127: 838S-841S.PubMed
14.
go back to reference Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C: The human obesity gene map: the 2005 update. Obesity (Silver Spring). 2006, 14: 529-644.CrossRef Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C: The human obesity gene map: the 2005 update. Obesity (Silver Spring). 2006, 14: 529-644.CrossRef
15.
go back to reference Shen CL, Chyu MC, Pence BC, Yeh JK, Zhang Y, Felton CK, Doctolero S, Wang JS: Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: safety and quality of life report. BMC Compl Alternative Med. 2010, 10: 76-CrossRef Shen CL, Chyu MC, Pence BC, Yeh JK, Zhang Y, Felton CK, Doctolero S, Wang JS: Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: safety and quality of life report. BMC Compl Alternative Med. 2010, 10: 76-CrossRef
16.
go back to reference Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Dunn DM, Wang JS: Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int. 2011, 22: 327-337.CrossRefPubMed Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Dunn DM, Wang JS: Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int. 2011, 22: 327-337.CrossRefPubMed
17.
go back to reference Boschmann M, Thielecke F: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr. 2007, 26: 389S-395S.CrossRefPubMed Boschmann M, Thielecke F: The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr. 2007, 26: 389S-395S.CrossRefPubMed
18.
go back to reference Lonac MC, Richards JC, Schweder MM, Johnson TK, Bell C: Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding. Obesity (Silver Spring). 2011, 19: 298-304.CrossRef Lonac MC, Richards JC, Schweder MM, Johnson TK, Bell C: Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding. Obesity (Silver Spring). 2011, 19: 298-304.CrossRef
19.
go back to reference Esposito K, Nappo F, Giugliano F, Di Palo C, Ciotola M, Barbieri M, Paolisso G, Giugliano D: Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2003, 78: 1135-1140.PubMed Esposito K, Nappo F, Giugliano F, Di Palo C, Ciotola M, Barbieri M, Paolisso G, Giugliano D: Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2003, 78: 1135-1140.PubMed
20.
go back to reference Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, Nelson KW, Ballantyne CM: Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab. 2004, 89: 2697-2703.CrossRefPubMed Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, Nelson KW, Ballantyne CM: Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab. 2004, 89: 2697-2703.CrossRefPubMed
21.
go back to reference Marcell TJ, McAuley KA, Traustadottir T, Reaven PD: Exercise training is not associated with improved levels of C-reactive protein or adiponectin. Metabolism. 2005, 54: 533-541.CrossRefPubMed Marcell TJ, McAuley KA, Traustadottir T, Reaven PD: Exercise training is not associated with improved levels of C-reactive protein or adiponectin. Metabolism. 2005, 54: 533-541.CrossRefPubMed
22.
go back to reference Tiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Hakkinen AM, Tamminen M, Teramo K, Yki-Jarvinen H: Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 2003, 52: 701-707.CrossRefPubMed Tiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Hakkinen AM, Tamminen M, Teramo K, Yki-Jarvinen H: Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 2003, 52: 701-707.CrossRefPubMed
23.
go back to reference Shirai N, Suzuki H: Effects of simultaneous intakes of fish oil and green tea extracts on plasma, glucose, insulin, C-peptide, and adiponectin and on liver lipid concentrations in mice fed low- and high-fat diets. Ann Nutr Metab. 2008, 52: 241-249.CrossRefPubMed Shirai N, Suzuki H: Effects of simultaneous intakes of fish oil and green tea extracts on plasma, glucose, insulin, C-peptide, and adiponectin and on liver lipid concentrations in mice fed low- and high-fat diets. Ann Nutr Metab. 2008, 52: 241-249.CrossRefPubMed
24.
go back to reference Zhou JR, Li L, Pan W: Dietary soy and tea combinations for prevention of breast and prostate cancers by targeting metabolic syndrome elements in mice. Am J Clin Nutr. 2007, 86: s882-888.PubMedCentralPubMed Zhou JR, Li L, Pan W: Dietary soy and tea combinations for prevention of breast and prostate cancers by targeting metabolic syndrome elements in mice. Am J Clin Nutr. 2007, 86: s882-888.PubMedCentralPubMed
25.
go back to reference Nicklas BJ, You T, Pahor M: Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. CMAJ. 2005, 172: 1199-1209.PubMedCentralCrossRefPubMed Nicklas BJ, You T, Pahor M: Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. CMAJ. 2005, 172: 1199-1209.PubMedCentralCrossRefPubMed
26.
go back to reference Fu Z, Zhen W, Yuskavage J, Liu D: Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr. 2011, 105: 1218-1225.PubMedCentralCrossRefPubMed Fu Z, Zhen W, Yuskavage J, Liu D: Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr. 2011, 105: 1218-1225.PubMedCentralCrossRefPubMed
Metadata
Title
Metabolic profile response to administration of epigallocatechin-3-gallate in high-fat-fed mice
Authors
Mayara Franzoi Moreno
Rachel De Laquila
Marcos Hiromu Okuda
Fábio Santos Lira
Gabriel Inácio de Morais Honorato de Souza
Cláudio Teodoro de Souza
Monica Marques Telles
Eliane Beraldi Ribeiro
Claudia Maria Oller do Nascimento
Lila Missae Oyama
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2014
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-6-84

Other articles of this Issue 1/2014

Diabetology & Metabolic Syndrome 1/2014 Go to the issue