Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2014

Open Access 01-12-2014 | Research

Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats

Authors: Michael Ezrokhi, Shuqin Luo, Yelena Trubitsyna, Anthony H Cincotta

Published in: Diabetology & Metabolic Syndrome | Issue 1/2014

Login to get access

Abstract

Background

The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated.

Objective

This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat.

Methods

Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity.

Results

Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats.

Conclusion

These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cincotta AH: Hypothalamic role in the insulin resistance syndrome. Insulin Resistance and Insulin Resistance Syndrome, Frontiers in Animal Diabetes Research Series. Edited by: Hansen B, Shafrir E. 2002, London: Taylor and Francis, 271-312.CrossRef Cincotta AH: Hypothalamic role in the insulin resistance syndrome. Insulin Resistance and Insulin Resistance Syndrome, Frontiers in Animal Diabetes Research Series. Edited by: Hansen B, Shafrir E. 2002, London: Taylor and Francis, 271-312.CrossRef
3.
go back to reference Luo S, Luo J, Cincotta AH: Suprachiasmatic nuclei monoamine metabolism of glucose tolerance versus intolerant hamsters. Neuroreport. 1999, 10: 2073-2077. 10.1097/00001756-199907130-00015.PubMedCrossRef Luo S, Luo J, Cincotta AH: Suprachiasmatic nuclei monoamine metabolism of glucose tolerance versus intolerant hamsters. Neuroreport. 1999, 10: 2073-2077. 10.1097/00001756-199907130-00015.PubMedCrossRef
4.
go back to reference Luo S, Luo J, Meier AH, Cincotta AH: Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997, 8: 3495-3499. 10.1097/00001756-199711100-00016.PubMedCrossRef Luo S, Luo J, Meier AH, Cincotta AH: Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997, 8: 3495-3499. 10.1097/00001756-199711100-00016.PubMedCrossRef
5.
go back to reference Cincotta AH, MacEachern TA, Meier AH: Bromocriptine redirects metabolism and prevents seasonal onset of the obese hyperinsulinemic state in Syrian hamsters. Am J Physiol. 1993, 264: E285-E293.PubMed Cincotta AH, MacEachern TA, Meier AH: Bromocriptine redirects metabolism and prevents seasonal onset of the obese hyperinsulinemic state in Syrian hamsters. Am J Physiol. 1993, 264: E285-E293.PubMed
6.
go back to reference Cincotta AH, Schiller BC, Meier AH: Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia, insulin resistance and impaired glucose tolerance in the Syrian hamster, Mesocricetus auratus. Metabolism. 1991, 40: 639-644. 10.1016/0026-0495(91)90057-4.PubMedCrossRef Cincotta AH, Schiller BC, Meier AH: Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia, insulin resistance and impaired glucose tolerance in the Syrian hamster, Mesocricetus auratus. Metabolism. 1991, 40: 639-644. 10.1016/0026-0495(91)90057-4.PubMedCrossRef
7.
go back to reference Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: High Fat Feeding Initiates Insulin Resistance Syndrome Inducing Neuronal Pathways in the Ventromedial Hypothalamus (VMH) [abstract]. Diabetes. 2012, 61 (Suppl 1): 1912P- Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: High Fat Feeding Initiates Insulin Resistance Syndrome Inducing Neuronal Pathways in the Ventromedial Hypothalamus (VMH) [abstract]. Diabetes. 2012, 61 (Suppl 1): 1912P-
8.
go back to reference Cincotta AH, Meier AH: Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism. 1995, 44: 1349-1355. 10.1016/0026-0495(95)90041-1.PubMedCrossRef Cincotta AH, Meier AH: Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism. 1995, 44: 1349-1355. 10.1016/0026-0495(95)90041-1.PubMedCrossRef
9.
go back to reference Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J. Endocr. 1985, 106: 173-176. 10.1677/joe.0.1060173.PubMedCrossRef Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J. Endocr. 1985, 106: 173-176. 10.1677/joe.0.1060173.PubMedCrossRef
10.
go back to reference Luo S, Liang Y, Cincotta AH: Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose intolerant state in hamsters. Neuroendocrinology. 1999, 69: 160-166. 10.1159/000054415.PubMedCrossRef Luo S, Liang Y, Cincotta AH: Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose intolerant state in hamsters. Neuroendocrinology. 1999, 69: 160-166. 10.1159/000054415.PubMedCrossRef
11.
go back to reference Cincotta AH, Luo S, Zhang Y, Bina G, Jetton TL, Scislowski PWD: Chronic infusion of norepinephrine into the VMH of normal rats induces the obese-glucose intolerant state. Am J Physiol. 2000, 278: R435-R444. Cincotta AH, Luo S, Zhang Y, Bina G, Jetton TL, Scislowski PWD: Chronic infusion of norepinephrine into the VMH of normal rats induces the obese-glucose intolerant state. Am J Physiol. 2000, 278: R435-R444.
12.
go back to reference Luo S, Luo J, Cincotta AH: Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology. 1999, 70: 460-465. 10.1159/000054508.PubMedCrossRef Luo S, Luo J, Cincotta AH: Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology. 1999, 70: 460-465. 10.1159/000054508.PubMedCrossRef
13.
go back to reference Aleixandre De Artiñano A, Miguel Castro M: Experimental rat models to study the metabolic syndrome. Br J Nutr. 2009, 102: 1246-1253. 10.1017/S0007114509990729.PubMedCrossRef Aleixandre De Artiñano A, Miguel Castro M: Experimental rat models to study the metabolic syndrome. Br J Nutr. 2009, 102: 1246-1253. 10.1017/S0007114509990729.PubMedCrossRef
14.
go back to reference Luo S, Meier AH, Cincotta AH: Bromocriptine reduces obesity, glucose intolerance, and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998, 68: 1-10. 10.1159/000054344.PubMedCrossRef Luo S, Meier AH, Cincotta AH: Bromocriptine reduces obesity, glucose intolerance, and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998, 68: 1-10. 10.1159/000054344.PubMedCrossRef
15.
go back to reference Liang Y, Luo S, Cincotta AH: Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism. 1999, 48: 1287-1289. 10.1016/S0026-0495(99)90269-X.PubMedCrossRef Liang Y, Luo S, Cincotta AH: Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism. 1999, 48: 1287-1289. 10.1016/S0026-0495(99)90269-X.PubMedCrossRef
16.
go back to reference Fujita S, Kazunori A, Lee J, Uchida T, Koshikawa N, Cools AR: Decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum of spontaneously hypertensive rat. Eur J Pharmacol. 2004, 484: 75-82. 10.1016/j.ejphar.2003.10.050.PubMedCrossRef Fujita S, Kazunori A, Lee J, Uchida T, Koshikawa N, Cools AR: Decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum of spontaneously hypertensive rat. Eur J Pharmacol. 2004, 484: 75-82. 10.1016/j.ejphar.2003.10.050.PubMedCrossRef
17.
go back to reference Linthorst ACE, Van Don Busse M, De Jong W, Versteeg DHG: Electrically-stimulated [3H]dopamine and [14C]acetylcholine release from nucleus accumbens slices: difference between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res. 1990, 509: 266-272. 10.1016/0006-8993(90)90551-L.PubMedCrossRef Linthorst ACE, Van Don Busse M, De Jong W, Versteeg DHG: Electrically-stimulated [3H]dopamine and [14C]acetylcholine release from nucleus accumbens slices: difference between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res. 1990, 509: 266-272. 10.1016/0006-8993(90)90551-L.PubMedCrossRef
18.
go back to reference Luo S, Zhang Y, Ezrokhi M, Trubitsyna Y, Cincotta AH: High fat feeding abolishes the insulin-sensitizing peak in circadian dopamine activity at the biological clock [abstract]. Diabetes. 2014, 63 (Suppl 1): 1824P- Luo S, Zhang Y, Ezrokhi M, Trubitsyna Y, Cincotta AH: High fat feeding abolishes the insulin-sensitizing peak in circadian dopamine activity at the biological clock [abstract]. Diabetes. 2014, 63 (Suppl 1): 1824P-
19.
go back to reference Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: Elevation of serotonin activity within the ventromedial hypothalamus (VMH) induces the hypertensive insulin resistant state in rats [abstract]. Diabetes. 2011, 60 (Suppl 1): A128- Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: Elevation of serotonin activity within the ventromedial hypothalamus (VMH) induces the hypertensive insulin resistant state in rats [abstract]. Diabetes. 2011, 60 (Suppl 1): A128-
20.
go back to reference Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S: Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol. 2009, 24: 1669-1676. 10.1111/j.1440-1746.2009.06039.x.PubMedCrossRef Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S: Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol. 2009, 24: 1669-1676. 10.1111/j.1440-1746.2009.06039.x.PubMedCrossRef
21.
go back to reference Asterholm IW, Scherer PE: Enhanced metabolic flexibility associated with elevated adiponectin levels. Am J Pathol. 2010, 176: 1364-1376. 10.2353/ajpath.2010.090647.PubMedCentralPubMedCrossRef Asterholm IW, Scherer PE: Enhanced metabolic flexibility associated with elevated adiponectin levels. Am J Pathol. 2010, 176: 1364-1376. 10.2353/ajpath.2010.090647.PubMedCentralPubMedCrossRef
22.
go back to reference Peng Y, Rideout D, Rakita S, Sajan M, Farese R, You M, Murr MM: Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J Gastrointest Surg. 2009, 3: 2043-2049.CrossRef Peng Y, Rideout D, Rakita S, Sajan M, Farese R, You M, Murr MM: Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J Gastrointest Surg. 2009, 3: 2043-2049.CrossRef
23.
go back to reference Sowers JR, Resch G, Tempel G, Herzog J, Colantino M: Hyperprolactinaemia in the spontaneously hypertensive rat. Acta Endocrinol (Copenh). 1979, 90: 1-7. Sowers JR, Resch G, Tempel G, Herzog J, Colantino M: Hyperprolactinaemia in the spontaneously hypertensive rat. Acta Endocrinol (Copenh). 1979, 90: 1-7.
24.
go back to reference Berinder K, Nyström T, Höybye C, Hall K, Hulting AL: Insulin sensitivity and lipid profile in prolactinoma patients before and after normalization of prolactin by dopamine agonist therapy. Pituitary. 2011, 14: 199-207. 10.1007/s11102-010-0277-9.PubMedCrossRef Berinder K, Nyström T, Höybye C, Hall K, Hulting AL: Insulin sensitivity and lipid profile in prolactinoma patients before and after normalization of prolactin by dopamine agonist therapy. Pituitary. 2011, 14: 199-207. 10.1007/s11102-010-0277-9.PubMedCrossRef
25.
go back to reference Tuzcu A, Yalaki S, Arikan S, Gokalp D, Bahcec M, Tuzcu S: Evaluation of insulin sensitivity in hyperprolactinemic subjects by euglycemic hyperinsulinemic clamp technique. Pituitary. 2009, 12: 330-334. 10.1007/s11102-009-0183-1.PubMedCrossRef Tuzcu A, Yalaki S, Arikan S, Gokalp D, Bahcec M, Tuzcu S: Evaluation of insulin sensitivity in hyperprolactinemic subjects by euglycemic hyperinsulinemic clamp technique. Pituitary. 2009, 12: 330-334. 10.1007/s11102-009-0183-1.PubMedCrossRef
26.
go back to reference Tuzcu A, Bahceci M, Dursun M, Turgut C, Bahceci S: Insulin sensitivity and hyperprolactinemia. J Endocrinol Invest. 2003, 26: 341-346. 10.1007/BF03345182.PubMedCrossRef Tuzcu A, Bahceci M, Dursun M, Turgut C, Bahceci S: Insulin sensitivity and hyperprolactinemia. J Endocrinol Invest. 2003, 26: 341-346. 10.1007/BF03345182.PubMedCrossRef
27.
go back to reference Foss MC, Paula FJ, Paccola GM, Piccinato CE: Peripheral glucose metabolism in human hyperprolactinaemia. Clin Endocrinol (Oxf). 1995, 43: 721-726. 10.1111/j.1365-2265.1995.tb00541.x.CrossRef Foss MC, Paula FJ, Paccola GM, Piccinato CE: Peripheral glucose metabolism in human hyperprolactinaemia. Clin Endocrinol (Oxf). 1995, 43: 721-726. 10.1111/j.1365-2265.1995.tb00541.x.CrossRef
28.
go back to reference Serri O, Beauregard H, Rasio E, Hardy J: Decreased sensitivity to insulin in women with microprolactinomas. Fertil Steril. 1986, 45: 572-574.PubMed Serri O, Beauregard H, Rasio E, Hardy J: Decreased sensitivity to insulin in women with microprolactinomas. Fertil Steril. 1986, 45: 572-574.PubMed
29.
go back to reference Dos Santos Silva CM, Barbosa FR, Lima GA, Warszawski L, Fontes R, Domingues RC, Gadelha MR: BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring). 2011, 19: 800-805. 10.1038/oby.2010.150.CrossRef Dos Santos Silva CM, Barbosa FR, Lima GA, Warszawski L, Fontes R, Domingues RC, Gadelha MR: BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring). 2011, 19: 800-805. 10.1038/oby.2010.150.CrossRef
30.
go back to reference Cincotta AH, Wilson JM, DeSouza CJ, Meier AH: Properly timed injections of cortisol and prolactin produce long-term reductions in obesity, hyperinsulinaemia and insulin resistance in the Syrian hamster (Mesocricetus auratus). J Endocrinol. 1989, 120: 385-391. 10.1677/joe.0.1200385.PubMedCrossRef Cincotta AH, Wilson JM, DeSouza CJ, Meier AH: Properly timed injections of cortisol and prolactin produce long-term reductions in obesity, hyperinsulinaemia and insulin resistance in the Syrian hamster (Mesocricetus auratus). J Endocrinol. 1989, 120: 385-391. 10.1677/joe.0.1200385.PubMedCrossRef
31.
go back to reference Cincotta AH, Schiller BC, Landry RJ, Herbert SJ, Miers WR, Meier AH: Circadian neuroendocrine role in age-related changes in body fat stores and insulin sensitivity of the male Sprague-Dawley rat. Chronobiol Int. 1993, 10: 244-258. 10.3109/07420529309059707.PubMedCrossRef Cincotta AH, Schiller BC, Landry RJ, Herbert SJ, Miers WR, Meier AH: Circadian neuroendocrine role in age-related changes in body fat stores and insulin sensitivity of the male Sprague-Dawley rat. Chronobiol Int. 1993, 10: 244-258. 10.3109/07420529309059707.PubMedCrossRef
32.
go back to reference Park S, Kang S, Lee HW, Ko BS: Central prolactin modulates insulin sensitivity and insulin secretion in diabetic rats. Neuroendocrinology. 2012, 95: 332-343. 10.1159/000336501.PubMedCrossRef Park S, Kang S, Lee HW, Ko BS: Central prolactin modulates insulin sensitivity and insulin secretion in diabetic rats. Neuroendocrinology. 2012, 95: 332-343. 10.1159/000336501.PubMedCrossRef
33.
go back to reference Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol. 1985, 106: 173-176. 10.1677/joe.0.1060173.PubMedCrossRef Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol. 1985, 106: 173-176. 10.1677/joe.0.1060173.PubMedCrossRef
34.
go back to reference Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in insulin receptor profile in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol. 1985, 106: 177-181. 10.1677/joe.0.1060177.PubMedCrossRef Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in insulin receptor profile in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol. 1985, 106: 177-181. 10.1677/joe.0.1060177.PubMedCrossRef
35.
go back to reference Cincotta AH, Meier AH: Prolactin influences the circadian rhythm of lipogenesis in primary cultured hepatocytes. Horm Metab Res. 1989, 21: 64-68. 10.1055/s-2007-1009152.PubMedCrossRef Cincotta AH, Meier AH: Prolactin influences the circadian rhythm of lipogenesis in primary cultured hepatocytes. Horm Metab Res. 1989, 21: 64-68. 10.1055/s-2007-1009152.PubMedCrossRef
36.
go back to reference Spark RF, Dickstein G: Bromocriptine and endocrine disorders. Ann Intern Med. 1979, 90: 949-956. 10.7326/0003-4819-90-6-949.PubMedCrossRef Spark RF, Dickstein G: Bromocriptine and endocrine disorders. Ann Intern Med. 1979, 90: 949-956. 10.7326/0003-4819-90-6-949.PubMedCrossRef
37.
go back to reference Verhelst J, Abs R: Hyperprolactinemia: pathophysiology and management. Treat Endocrinol. 2003, 2: 23-32. 10.2165/00024677-200302010-00003.PubMedCrossRef Verhelst J, Abs R: Hyperprolactinemia: pathophysiology and management. Treat Endocrinol. 2003, 2: 23-32. 10.2165/00024677-200302010-00003.PubMedCrossRef
38.
go back to reference Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX: Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res. 2014, Epub ahead of print Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX: Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res. 2014, Epub ahead of print
39.
go back to reference Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P: Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem. 2005, 280: 36824-36832. 10.1074/jbc.M505560200.PubMedCrossRef Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P: Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem. 2005, 280: 36824-36832. 10.1074/jbc.M505560200.PubMedCrossRef
40.
go back to reference Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE: Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol. 2012, 26: 1757-1772. 10.1210/me.2012-1101.PubMedCentralPubMedCrossRef Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE: Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol. 2012, 26: 1757-1772. 10.1210/me.2012-1101.PubMedCentralPubMedCrossRef
41.
go back to reference Ustione A, Piston DW, Harris PE: Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol. 2013, 27: 1198-1207. 10.1210/me.2013-1083.PubMedCentralPubMedCrossRef Ustione A, Piston DW, Harris PE: Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol. 2013, 27: 1198-1207. 10.1210/me.2013-1083.PubMedCentralPubMedCrossRef
42.
go back to reference Van Weenen JE DL, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B: The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol. 2010, 79: 1827-1836. 10.1016/j.bcp.2010.01.029.CrossRef Van Weenen JE DL, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B: The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol. 2010, 79: 1827-1836. 10.1016/j.bcp.2010.01.029.CrossRef
43.
go back to reference Cincotta AH, Meier AH: Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 1996, 19: 667-670. 10.2337/diacare.19.6.667.PubMedCrossRef Cincotta AH, Meier AH: Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 1996, 19: 667-670. 10.2337/diacare.19.6.667.PubMedCrossRef
44.
go back to reference Cincotta AH, Meier AH, Burritt H, Raskin P: Bromocriptine (Ergoset™) improves glycemic control in obese-NIDDM subjects [abstract]. Diabetes. 1995, 44 (Suppl 1): 168A- Cincotta AH, Meier AH, Burritt H, Raskin P: Bromocriptine (Ergoset™) improves glycemic control in obese-NIDDM subjects [abstract]. Diabetes. 1995, 44 (Suppl 1): 168A-
45.
go back to reference Bina KG, Cincotta AH: Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000, 71: 68-78. 10.1159/000054522.PubMedCrossRef Bina KG, Cincotta AH: Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000, 71: 68-78. 10.1159/000054522.PubMedCrossRef
46.
go back to reference Liang Y, Lubkin M, Sheng H, Scislowski PW, Cincotta AH: Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta. 1998, 1405: 1-13. 10.1016/S0167-4889(98)00092-5.PubMedCrossRef Liang Y, Lubkin M, Sheng H, Scislowski PW, Cincotta AH: Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta. 1998, 1405: 1-13. 10.1016/S0167-4889(98)00092-5.PubMedCrossRef
47.
go back to reference Liang Y, Jetton TL, Lubkin M, Meier AH, Cincotta AH: Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse. Cell Mol Life Sci. 1998, 54: 703-711. 10.1007/s000180050197.PubMedCrossRef Liang Y, Jetton TL, Lubkin M, Meier AH, Cincotta AH: Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse. Cell Mol Life Sci. 1998, 54: 703-711. 10.1007/s000180050197.PubMedCrossRef
48.
go back to reference Pacini G: The hyperbolic equilibrium between insulin sensitivity and secretion. Nutr Metab Cardiovasc Dis. 2006, 16 (Suppl 1): S22-S27.PubMedCrossRef Pacini G: The hyperbolic equilibrium between insulin sensitivity and secretion. Nutr Metab Cardiovasc Dis. 2006, 16 (Suppl 1): S22-S27.PubMedCrossRef
50.
go back to reference Begriche K, Igoudjil A, Pessayre D, Fromenty B: Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion. 2006, 6: 1-28.PubMedCrossRef Begriche K, Igoudjil A, Pessayre D, Fromenty B: Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion. 2006, 6: 1-28.PubMedCrossRef
51.
go back to reference Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology. 2013, 58: 1497-1507. 10.1002/hep.26226.PubMedCrossRef Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology. 2013, 58: 1497-1507. 10.1002/hep.26226.PubMedCrossRef
52.
go back to reference Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J, Li J: The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 2010, 285: 29965-29973. 10.1074/jbc.M110.128694.PubMedCentralPubMedCrossRef Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J, Li J: The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 2010, 285: 29965-29973. 10.1074/jbc.M110.128694.PubMedCentralPubMedCrossRef
53.
go back to reference Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 14: 860-867.CrossRef Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 14: 860-867.CrossRef
54.
go back to reference Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P: Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 2010, 139: 846-856. 10.1053/j.gastro.2010.05.039.PubMedCrossRef Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P: Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology. 2010, 139: 846-856. 10.1053/j.gastro.2010.05.039.PubMedCrossRef
55.
go back to reference Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S: Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009, 284: 14809-14818. 10.1074/jbc.M901488200.PubMedCentralPubMedCrossRef Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S: Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009, 284: 14809-14818. 10.1074/jbc.M901488200.PubMedCentralPubMedCrossRef
56.
go back to reference Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC: Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res. 2012, 53: 1080-1092. 10.1194/jlr.M023382.PubMedCentralPubMedCrossRef Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC: Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res. 2012, 53: 1080-1092. 10.1194/jlr.M023382.PubMedCentralPubMedCrossRef
57.
go back to reference Sunny NE, Parks EJ, Browning JD, Burgess SC: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalchoholic fatty liver disease. Cell Metab. 2011, 14: 804-810. 10.1016/j.cmet.2011.11.004.PubMedCentralPubMedCrossRef Sunny NE, Parks EJ, Browning JD, Burgess SC: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalchoholic fatty liver disease. Cell Metab. 2011, 14: 804-810. 10.1016/j.cmet.2011.11.004.PubMedCentralPubMedCrossRef
58.
go back to reference Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM: Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes. 2013, 62: 2095-2105. 10.2337/db12-1397.PubMedCentralPubMedCrossRef Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM: Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes. 2013, 62: 2095-2105. 10.2337/db12-1397.PubMedCentralPubMedCrossRef
59.
go back to reference Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, Depinho RA, Puigserver P, White MF: Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009, 15: 1307-1311. 10.1038/nm.2049.PubMedCentralPubMedCrossRef Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, Depinho RA, Puigserver P, White MF: Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med. 2009, 15: 1307-1311. 10.1038/nm.2049.PubMedCentralPubMedCrossRef
60.
go back to reference Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK: Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J. 2012, 26: 628-638. 10.1096/fj.11-194019.PubMedCentralPubMedCrossRef Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK: Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J. 2012, 26: 628-638. 10.1096/fj.11-194019.PubMedCentralPubMedCrossRef
61.
go back to reference Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi HS, Lee SH, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M: Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes. 2009, 58: 965-974. 10.2337/db08-1183.PubMedCentralPubMedCrossRef Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi HS, Lee SH, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M: Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes. 2009, 58: 965-974. 10.2337/db08-1183.PubMedCentralPubMedCrossRef
62.
go back to reference Monsenego J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol. 2012, 56: 632-639. 10.1016/j.jhep.2011.10.008.PubMedCrossRef Monsenego J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol. 2012, 56: 632-639. 10.1016/j.jhep.2011.10.008.PubMedCrossRef
63.
go back to reference Orellana-Gavalda JM, Herrero L, Malandrino MI, Paneda A, Sol Rodriguez-Pena M, Petry H, Asins G, Van Deventer S, Hegardt FG, Serra D: Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fattyacid oxidation. Hepatology. 2011, 53: 821-832. 10.1002/hep.24140.PubMedCrossRef Orellana-Gavalda JM, Herrero L, Malandrino MI, Paneda A, Sol Rodriguez-Pena M, Petry H, Asins G, Van Deventer S, Hegardt FG, Serra D: Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fattyacid oxidation. Hepatology. 2011, 53: 821-832. 10.1002/hep.24140.PubMedCrossRef
64.
go back to reference Serra D, Mera P, Malandrino MI, Mir JF, Herrero L: Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013, 19: 269-284. 10.1089/ars.2012.4875.PubMedCentralPubMedCrossRef Serra D, Mera P, Malandrino MI, Mir JF, Herrero L: Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013, 19: 269-284. 10.1089/ars.2012.4875.PubMedCentralPubMedCrossRef
65.
go back to reference Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N: Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes. 2005, 54: 3458-3465. 10.2337/diabetes.54.12.3458.PubMedCrossRef Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N: Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes. 2005, 54: 3458-3465. 10.2337/diabetes.54.12.3458.PubMedCrossRef
66.
go back to reference Galbo T, Olsen GS, Quistorff B, Nishimura E: Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One. 2011, 6: e27424-10.1371/journal.pone.0027424.PubMedCentralPubMedCrossRef Galbo T, Olsen GS, Quistorff B, Nishimura E: Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One. 2011, 6: e27424-10.1371/journal.pone.0027424.PubMedCentralPubMedCrossRef
67.
go back to reference Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM: Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes. 2009, 58: 1499-1508. 10.2337/db08-1571.PubMedCentralPubMedCrossRef Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM: Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes. 2009, 58: 1499-1508. 10.2337/db08-1571.PubMedCentralPubMedCrossRef
68.
go back to reference Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW, Brady MJ, Macleod KF: BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012, 32: 2570-2584. 10.1128/MCB.00167-12.PubMedCentralPubMedCrossRef Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW, Brady MJ, Macleod KF: BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012, 32: 2570-2584. 10.1128/MCB.00167-12.PubMedCentralPubMedCrossRef
69.
go back to reference Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999, 103: 1489-1498. 10.1172/JCI6223.PubMedCentralPubMedCrossRef Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999, 103: 1489-1498. 10.1172/JCI6223.PubMedCentralPubMedCrossRef
70.
go back to reference Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M: PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med. 2004, 10: 530-534. 10.1038/nm1044.PubMedCrossRef Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M: PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med. 2004, 10: 530-534. 10.1038/nm1044.PubMedCrossRef
71.
go back to reference Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Müller-Decker K, Wahli W, Sticht C, Gretz N, Von Loeffelholz C, Stockmann M, Pfeiffer A, Stöhr S, Dallinga-Thie GM, Nawroth PP, Berriel Diaz M, Herzig S: Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab. 2011, 13: 389-400. 10.1016/j.cmet.2011.02.011.PubMedCrossRef Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Müller-Decker K, Wahli W, Sticht C, Gretz N, Von Loeffelholz C, Stockmann M, Pfeiffer A, Stöhr S, Dallinga-Thie GM, Nawroth PP, Berriel Diaz M, Herzig S: Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab. 2011, 13: 389-400. 10.1016/j.cmet.2011.02.011.PubMedCrossRef
72.
go back to reference Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3: e101-10.1371/journal.pbio.0030101.PubMedCentralPubMedCrossRef Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3: e101-10.1371/journal.pbio.0030101.PubMedCentralPubMedCrossRef
73.
go back to reference Nyman LR, Tian L, Hamm DA, Schoeb TR, Gower BA, Nagy TR, Wood PA: Long term effects of high fat or high carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a (CPT-1a) deficiency: Diet influences on CPT1a deficient mice. Nutr Diabetes. 2011, 1: e14-10.1038/nutd.2011.11.PubMedCentralPubMedCrossRef Nyman LR, Tian L, Hamm DA, Schoeb TR, Gower BA, Nagy TR, Wood PA: Long term effects of high fat or high carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a (CPT-1a) deficiency: Diet influences on CPT1a deficient mice. Nutr Diabetes. 2011, 1: e14-10.1038/nutd.2011.11.PubMedCentralPubMedCrossRef
74.
go back to reference Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A: Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes. 2003, 52: 642-649. 10.2337/diabetes.52.3.642.PubMedCrossRef Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A: Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes. 2003, 52: 642-649. 10.2337/diabetes.52.3.642.PubMedCrossRef
75.
go back to reference Monsénégo J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatology. 2012, 54: 632-639.CrossRef Monsénégo J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatology. 2012, 54: 632-639.CrossRef
77.
go back to reference Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI: Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004, 279: 32345-32353. 10.1074/jbc.M313478200.PubMedCrossRef Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI: Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004, 279: 32345-32353. 10.1074/jbc.M313478200.PubMedCrossRef
78.
go back to reference Muoio DM, Newgard CB: Fatty acid oxidation and insulin action: when less is more. Diabetes. 2008, 57: 1455-1456. 10.2337/db08-0281.PubMedCrossRef Muoio DM, Newgard CB: Fatty acid oxidation and insulin action: when less is more. Diabetes. 2008, 57: 1455-1456. 10.2337/db08-0281.PubMedCrossRef
79.
go back to reference Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R, Penninger JM: Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell. 2007, 131: 476-491. 10.1016/j.cell.2007.08.047.PubMedCrossRef Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R, Penninger JM: Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell. 2007, 131: 476-491. 10.1016/j.cell.2007.08.047.PubMedCrossRef
80.
go back to reference Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE: Local and systemic insulin resistance resulting from hepatic activiation of IKK-B and NFkB. Nat Med. 2005, 11: 183-190. 10.1038/nm1166.PubMedCentralPubMedCrossRef Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE: Local and systemic insulin resistance resulting from hepatic activiation of IKK-B and NFkB. Nat Med. 2005, 11: 183-190. 10.1038/nm1166.PubMedCentralPubMedCrossRef
82.
go back to reference Vanni E, Abate ML, Gentilcore E, Hickman I, Gambino R, Cassader M, Smedile A, Ferrannini E, Rizzetto M, Marchesini G, Gastaldelli A, Bugianesi E: Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C. Hepatology. 2009, 50: 697-706. 10.1002/hep.23031.PubMedCrossRef Vanni E, Abate ML, Gentilcore E, Hickman I, Gambino R, Cassader M, Smedile A, Ferrannini E, Rizzetto M, Marchesini G, Gastaldelli A, Bugianesi E: Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C. Hepatology. 2009, 50: 697-706. 10.1002/hep.23031.PubMedCrossRef
83.
go back to reference Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS: A central role for JNK in obesity and insulin resistance. Nature. 2002, 420: 333-336. 10.1038/nature01137.PubMedCrossRef Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS: A central role for JNK in obesity and insulin resistance. Nature. 2002, 420: 333-336. 10.1038/nature01137.PubMedCrossRef
84.
go back to reference Lim JH, Lee HJ, Jung MH, Song J: Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: A molecular mechanism leading to hepatic insulin resistance. Cell Signal. 2009, 21: 169-177. 10.1016/j.cellsig.2008.10.004.PubMedCrossRef Lim JH, Lee HJ, Jung MH, Song J: Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: A molecular mechanism leading to hepatic insulin resistance. Cell Signal. 2009, 21: 169-177. 10.1016/j.cellsig.2008.10.004.PubMedCrossRef
85.
go back to reference Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R, Watada H: Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1alpha in hepatic insulin resistance. Diabetes. 2008, 57: 2083-2091. 10.2337/db08-0144.PubMedCentralPubMedCrossRef Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R, Watada H: Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1alpha in hepatic insulin resistance. Diabetes. 2008, 57: 2083-2091. 10.2337/db08-0144.PubMedCentralPubMedCrossRef
86.
go back to reference Barthel A, Schmoll D: Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2003, 285: E685-E692.PubMedCrossRef Barthel A, Schmoll D: Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2003, 285: E685-E692.PubMedCrossRef
87.
go back to reference Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell. 2005, 120: 261-273. 10.1016/j.cell.2004.11.043.PubMedCrossRef Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell. 2005, 120: 261-273. 10.1016/j.cell.2004.11.043.PubMedCrossRef
88.
go back to reference Morino K, Petersen KF, Shulman GI: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2010, 55: S9-S15.CrossRef Morino K, Petersen KF, Shulman GI: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2010, 55: S9-S15.CrossRef
90.
go back to reference Finck BN, Kelly DP: PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006, 116: 615-622. 10.1172/JCI27794.PubMedCentralPubMedCrossRef Finck BN, Kelly DP: PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006, 116: 615-622. 10.1172/JCI27794.PubMedCentralPubMedCrossRef
91.
go back to reference Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001, 413: 179-183. 10.1038/35093131.PubMedCrossRef Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001, 413: 179-183. 10.1038/35093131.PubMedCrossRef
92.
go back to reference Miyake K, Ogawa W, Matsumoto M, Nakamura T, Sakaue H, Kasuga M: Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J Clin Invest. 2002, 110: 1483-1491. 10.1172/JCI0215880.PubMedCentralPubMedCrossRef Miyake K, Ogawa W, Matsumoto M, Nakamura T, Sakaue H, Kasuga M: Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J Clin Invest. 2002, 110: 1483-1491. 10.1172/JCI0215880.PubMedCentralPubMedCrossRef
93.
go back to reference Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003, 423: 550-555. 10.1038/nature01667.PubMedCrossRef Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003, 423: 550-555. 10.1038/nature01667.PubMedCrossRef
94.
go back to reference Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM: Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci U S A. 2003, 100: 4012-4017. 10.1073/pnas.0730870100.PubMedCentralPubMedCrossRef Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM: Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci U S A. 2003, 100: 4012-4017. 10.1073/pnas.0730870100.PubMedCentralPubMedCrossRef
95.
go back to reference Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001, 413: 131-138. 10.1038/35093050.PubMedCrossRef Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001, 413: 131-138. 10.1038/35093050.PubMedCrossRef
96.
go back to reference Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA: Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004, 18: 157-169. 10.1101/gad.1138104.PubMedCentralPubMedCrossRef Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA: Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004, 18: 157-169. 10.1101/gad.1138104.PubMedCentralPubMedCrossRef
97.
go back to reference Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE: Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med. 2004, 10: 633-637. 10.1038/nm1050.PubMedCrossRef Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE: Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med. 2004, 10: 633-637. 10.1038/nm1050.PubMedCrossRef
98.
go back to reference Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem. 2004, 279: 45803-45809. 10.1074/jbc.M406963200.PubMedCrossRef Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem. 2004, 279: 45803-45809. 10.1074/jbc.M406963200.PubMedCrossRef
99.
go back to reference Popa C, Riel PLCM, Meer WM, Stalenhoef AFH: The role of TNF-a in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007, 48: 751-762. 10.1194/jlr.R600021-JLR200.PubMedCrossRef Popa C, Riel PLCM, Meer WM, Stalenhoef AFH: The role of TNF-a in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007, 48: 751-762. 10.1194/jlr.R600021-JLR200.PubMedCrossRef
100.
go back to reference Torisu T, Sato N, Yoshiga D, Kobayashi T, Yoshioka T, Mori H, Iida M, Yoshimura A: The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes to Cells. 2007, 12: 143-154. 10.1111/j.1365-2443.2007.01044.x.PubMedCrossRef Torisu T, Sato N, Yoshiga D, Kobayashi T, Yoshioka T, Mori H, Iida M, Yoshimura A: The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes to Cells. 2007, 12: 143-154. 10.1111/j.1365-2443.2007.01044.x.PubMedCrossRef
101.
go back to reference Ueki K, Kondo T, Kahn CR: Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA. 2004, 101: 10422-10427. 10.1073/pnas.0402511101.PubMedCentralPubMedCrossRef Ueki K, Kondo T, Kahn CR: Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA. 2004, 101: 10422-10427. 10.1073/pnas.0402511101.PubMedCentralPubMedCrossRef
102.
go back to reference Nakae J, Kitamura T, Silver DL, Accili D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001, 108: 1359-1367. 10.1172/JCI200112876.PubMedCentralPubMedCrossRef Nakae J, Kitamura T, Silver DL, Accili D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001, 108: 1359-1367. 10.1172/JCI200112876.PubMedCentralPubMedCrossRef
103.
go back to reference Gross DNA, van den Heuvel APJ, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene. 2008, 27: 2320-2336. 10.1038/onc.2008.25.PubMedCrossRef Gross DNA, van den Heuvel APJ, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene. 2008, 27: 2320-2336. 10.1038/onc.2008.25.PubMedCrossRef
104.
go back to reference Gross DN, Wan M, Birnbaum MJ: The role of FOXO in the regulation of metabolism. Curr Diabetes Rep. 2009, 9: 208-214. 10.1007/s11892-009-0034-5.CrossRef Gross DN, Wan M, Birnbaum MJ: The role of FOXO in the regulation of metabolism. Curr Diabetes Rep. 2009, 9: 208-214. 10.1007/s11892-009-0034-5.CrossRef
105.
go back to reference Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, O'Doherty RM, DeFronzo RA, Richardson A, Musi N, Ward WF: Whole body overexpression of PGC-1a has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab. 2009, 296: E945-E954. 10.1152/ajpendo.90292.2008.PubMedCentralPubMedCrossRef Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, O'Doherty RM, DeFronzo RA, Richardson A, Musi N, Ward WF: Whole body overexpression of PGC-1a has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab. 2009, 296: E945-E954. 10.1152/ajpendo.90292.2008.PubMedCentralPubMedCrossRef
106.
go back to reference van den Buuse M, Lambrechts AC: Bromocriptine-induced decrease in blood pressure in conscious spontaneously hypertensive rats: evidence for a peripheral site of action. J Pharm Pharmacol. 1989, 41: 644-646. 10.1111/j.2042-7158.1989.tb06549.x.PubMedCrossRef van den Buuse M, Lambrechts AC: Bromocriptine-induced decrease in blood pressure in conscious spontaneously hypertensive rats: evidence for a peripheral site of action. J Pharm Pharmacol. 1989, 41: 644-646. 10.1111/j.2042-7158.1989.tb06549.x.PubMedCrossRef
107.
go back to reference Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Löffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI: The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009, 9: 252-264. 10.1016/j.cmet.2009.01.011.PubMedCentralPubMedCrossRef Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Löffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI: The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009, 9: 252-264. 10.1016/j.cmet.2009.01.011.PubMedCentralPubMedCrossRef
108.
go back to reference Kim JY, Song EH, Lee HJ, Oh YK, Choi KH, Yu DY, Park SI, Seong JK, Kim WH: HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways. J Mol Biol. 2010, 397: 917-931. 10.1016/j.jmb.2010.02.016.PubMedCrossRef Kim JY, Song EH, Lee HJ, Oh YK, Choi KH, Yu DY, Park SI, Seong JK, Kim WH: HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways. J Mol Biol. 2010, 397: 917-931. 10.1016/j.jmb.2010.02.016.PubMedCrossRef
109.
go back to reference Kim YM, Kim TH, Kim YW, Yang YM, Ryu Da H, Hwang SJ, Lee JR, Kim SC, Kim SG: Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med. 2010, 49: 1722-1734. 10.1016/j.freeradbiomed.2010.09.001.PubMedCrossRef Kim YM, Kim TH, Kim YW, Yang YM, Ryu Da H, Hwang SJ, Lee JR, Kim SC, Kim SG: Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med. 2010, 49: 1722-1734. 10.1016/j.freeradbiomed.2010.09.001.PubMedCrossRef
110.
go back to reference Singh R, Wang Y, Xiang Y, Tanaka KE, Guarde WA, Czaja MJ: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009, 49: 87-96. 10.1002/hep.22578.PubMedCentralPubMedCrossRef Singh R, Wang Y, Xiang Y, Tanaka KE, Guarde WA, Czaja MJ: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009, 49: 87-96. 10.1002/hep.22578.PubMedCentralPubMedCrossRef
111.
go back to reference Musso G, Gambino R, Cassader M: Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 2009, 48: 1-26. 10.1016/j.plipres.2008.08.001.PubMedCrossRef Musso G, Gambino R, Cassader M: Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 2009, 48: 1-26. 10.1016/j.plipres.2008.08.001.PubMedCrossRef
112.
go back to reference Wang D, Wei Y, Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006, 147: 943-951. 10.1210/en.2005-0570.PubMedCrossRef Wang D, Wei Y, Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006, 147: 943-951. 10.1210/en.2005-0570.PubMedCrossRef
113.
go back to reference Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC: Homocysteine- induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001, 107: 1263-1273. 10.1172/JCI11596.PubMedCentralPubMedCrossRef Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC: Homocysteine- induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001, 107: 1263-1273. 10.1172/JCI11596.PubMedCentralPubMedCrossRef
114.
go back to reference You M, Crabb DW: Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol. 2004, 34: 39-43. 10.1016/j.alcohol.2004.07.004.PubMedCrossRef You M, Crabb DW: Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol. 2004, 34: 39-43. 10.1016/j.alcohol.2004.07.004.PubMedCrossRef
115.
go back to reference Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML: Liver peroxisome proliferator activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003, 278: 34268-34276. 10.1074/jbc.M300043200.PubMedCrossRef Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML: Liver peroxisome proliferator activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003, 278: 34268-34276. 10.1074/jbc.M300043200.PubMedCrossRef
116.
go back to reference Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B, Reitman ML, Gonzalez FJ: Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003, 111: 737-747. 10.1172/JCI200317223.PubMedCentralPubMedCrossRef Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B, Reitman ML, Gonzalez FJ: Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003, 111: 737-747. 10.1172/JCI200317223.PubMedCentralPubMedCrossRef
117.
go back to reference Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O'Rahilly S: Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes. 2003, 52: 910-917. 10.2337/diabetes.52.4.910.PubMedCrossRef Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O'Rahilly S: Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes. 2003, 52: 910-917. 10.2337/diabetes.52.4.910.PubMedCrossRef
118.
go back to reference Park HJ, Jung UJ, Cho SJ, Jung HK, Shim S, Choi MS: Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J Nutr Biochem. 2013, 24: 419-427. 10.1016/j.jnutbio.2011.12.009.PubMedCrossRef Park HJ, Jung UJ, Cho SJ, Jung HK, Shim S, Choi MS: Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J Nutr Biochem. 2013, 24: 419-427. 10.1016/j.jnutbio.2011.12.009.PubMedCrossRef
119.
go back to reference Kim JH, Kim JE, Liu HY, Cao W, Chen J: Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem. 2008, 283: 708-715. 10.1074/jbc.M708568200.PubMedCrossRef Kim JH, Kim JE, Liu HY, Cao W, Chen J: Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem. 2008, 283: 708-715. 10.1074/jbc.M708568200.PubMedCrossRef
120.
go back to reference Liang Y, Cincotta AH: Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes Relat Metab Disord. 2001, 25: 698-704. 10.1038/sj.ijo.0801614.PubMedCrossRef Liang Y, Cincotta AH: Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes Relat Metab Disord. 2001, 25: 698-704. 10.1038/sj.ijo.0801614.PubMedCrossRef
121.
go back to reference Aguilar E, Rodríguez-Padilla ML, Pinilla L: Normoprolactinaemia in spontaneously hypertensive rats: absence of a close relationship between plasma concentrations of prolactin and systolic blood pressure. J Endocrinol. 1990, 125: 359-364. 10.1677/joe.0.1250359.PubMedCrossRef Aguilar E, Rodríguez-Padilla ML, Pinilla L: Normoprolactinaemia in spontaneously hypertensive rats: absence of a close relationship between plasma concentrations of prolactin and systolic blood pressure. J Endocrinol. 1990, 125: 359-364. 10.1677/joe.0.1250359.PubMedCrossRef
122.
go back to reference Hutchinson JS, Di Nicolantonio R, Lim A, Clements J, Funder JW: Effects of bromocriptine on blood pressure and plasma beta-endorphin in spontaneously hypertensive rats. Clin Sci (Lond). 1981, 61 (Suppl 7): 343s-345s.CrossRef Hutchinson JS, Di Nicolantonio R, Lim A, Clements J, Funder JW: Effects of bromocriptine on blood pressure and plasma beta-endorphin in spontaneously hypertensive rats. Clin Sci (Lond). 1981, 61 (Suppl 7): 343s-345s.CrossRef
123.
go back to reference Kanayama Y, Kohno M, Takaori K, Itoh S, Yasunari K, Takeda T: Involvement of sympathetic nervous system inhibition in the hypotensive effect of bromocriptine in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1987, 14: 141-144. 10.1111/j.1440-1681.1987.tb00969.x.PubMedCrossRef Kanayama Y, Kohno M, Takaori K, Itoh S, Yasunari K, Takeda T: Involvement of sympathetic nervous system inhibition in the hypotensive effect of bromocriptine in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1987, 14: 141-144. 10.1111/j.1440-1681.1987.tb00969.x.PubMedCrossRef
124.
go back to reference Oguro M, Takeda K, Itoh H, Takesako T, Tanaka M, Takenaka K, Hirata M, Nakata T, Tanabe S, Hayashi J: Role of sympathetic nerve inhibition in the vasodepressor effect of bromocriptine in normotensive and hypertensive rats. Jpn Circ J. 1992, 56: 943-949. 10.1253/jcj.56.943.PubMedCrossRef Oguro M, Takeda K, Itoh H, Takesako T, Tanaka M, Takenaka K, Hirata M, Nakata T, Tanabe S, Hayashi J: Role of sympathetic nerve inhibition in the vasodepressor effect of bromocriptine in normotensive and hypertensive rats. Jpn Circ J. 1992, 56: 943-949. 10.1253/jcj.56.943.PubMedCrossRef
125.
go back to reference Racz K, Kuchel O, Buu NT: Bromocriptine decreases blood pressure of spontaneously hypertensive rats without affecting the adrenomedullary synthesis of catecholamines. J Cardiovasc Pharmacol. 1986, 8: 676-680.PubMed Racz K, Kuchel O, Buu NT: Bromocriptine decreases blood pressure of spontaneously hypertensive rats without affecting the adrenomedullary synthesis of catecholamines. J Cardiovasc Pharmacol. 1986, 8: 676-680.PubMed
126.
go back to reference Struyker-Boudier HA, Van Essen H, Smits JF: Haemodynamic effects of bromocriptine in the conscious spontaneously hypertensive rat. J Pharm Pharmacol. 1984, 36: 123-125. 10.1111/j.2042-7158.1984.tb03009.x.PubMedCrossRef Struyker-Boudier HA, Van Essen H, Smits JF: Haemodynamic effects of bromocriptine in the conscious spontaneously hypertensive rat. J Pharm Pharmacol. 1984, 36: 123-125. 10.1111/j.2042-7158.1984.tb03009.x.PubMedCrossRef
127.
go back to reference Tan BK, Hutchinson JS: Plasma and pituitary prolactin and blood pressure in bromocriptine-treated spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol. 1987, 14: 797-803. 10.1111/j.1440-1681.1987.tb01871.x.PubMedCrossRef Tan BK, Hutchinson JS: Plasma and pituitary prolactin and blood pressure in bromocriptine-treated spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol. 1987, 14: 797-803. 10.1111/j.1440-1681.1987.tb01871.x.PubMedCrossRef
Metadata
Title
Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats
Authors
Michael Ezrokhi
Shuqin Luo
Yelena Trubitsyna
Anthony H Cincotta
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2014
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-6-104

Other articles of this Issue 1/2014

Diabetology & Metabolic Syndrome 1/2014 Go to the issue