Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2011

Open Access 01-12-2011 | Research

Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

Authors: Souhad El Akoum, Vikie Lamontagne, Isabelle Cloutier, Jean-François Tanguay

Published in: Diabetology & Metabolic Syndrome | Issue 1/2011

Login to get access

Abstract

Background

Adverse effects of high-fat diets (HFD) on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice.

Methods

C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD) or animal (AD) fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding.

Results

HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2) and estrogen receptor alpha (ERα) mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice.

Conclusions

The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of adipokines secretion and modulation of key genes mRNA expression. Compared with males, female mice demonstrate higher capacity in controlling glucose homeostasis in response to 20 weeks HFD feeding. Our data suggest gender specific interactions between the diet's fatty acid source, the adipocyte-secreted proteins and metabolic disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schuster DP: Obesity and the development of type 2 diabetes: the effects of fatty tissue inflammation. Diabetes Metab Syndr Obes. 3: 253-262. Schuster DP: Obesity and the development of type 2 diabetes: the effects of fatty tissue inflammation. Diabetes Metab Syndr Obes. 3: 253-262.
2.
go back to reference Ahima RS: Digging deeper into obesity. J Clin Invest. 121: 2076-2079. Ahima RS: Digging deeper into obesity. J Clin Invest. 121: 2076-2079.
3.
go back to reference Buechler C, Wanninger J, Neumeier M: Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 17: 2801-2811. Buechler C, Wanninger J, Neumeier M: Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 17: 2801-2811.
4.
go back to reference Schwartz DR, Lazar MA: Human resistin: found in translation from mouse to man. Trends Endocrinol Metab. 22: 259-265. Schwartz DR, Lazar MA: Human resistin: found in translation from mouse to man. Trends Endocrinol Metab. 22: 259-265.
5.
go back to reference Wauman J, Tavernier J: Leptin receptor signaling: pathways to leptin resistance. Front Biosci. 17: 2771-2793. Wauman J, Tavernier J: Leptin receptor signaling: pathways to leptin resistance. Front Biosci. 17: 2771-2793.
6.
go back to reference Wang P, Mariman E, Renes J, Keijer J: The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008, 216: 3-13. 10.1002/jcp.21386.CrossRefPubMed Wang P, Mariman E, Renes J, Keijer J: The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008, 216: 3-13. 10.1002/jcp.21386.CrossRefPubMed
7.
go back to reference Unger RH, Clark GO, Scherer PE, Orci L: Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 1801: 209-214. Unger RH, Clark GO, Scherer PE, Orci L: Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 1801: 209-214.
8.
go back to reference Declercq V, Taylor C, Zahradka P: Adipose tissue: the link between obesity and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2008, 8: 228-237. 10.2174/187152908785849080.CrossRefPubMed Declercq V, Taylor C, Zahradka P: Adipose tissue: the link between obesity and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2008, 8: 228-237. 10.2174/187152908785849080.CrossRefPubMed
9.
go back to reference Bessesen DH: Update on obesity. J Clin Endocrinol Metab. 2008, 93: 2027-2034. 10.1210/jc.2008-0520.CrossRefPubMed Bessesen DH: Update on obesity. J Clin Endocrinol Metab. 2008, 93: 2027-2034. 10.1210/jc.2008-0520.CrossRefPubMed
10.
go back to reference Mirza MS: Obesity, Visceral Fat, and NAFLD: Querying the Role of Adipokines in the Progression of Nonalcoholic Fatty Liver Disease. ISRN Gastroenterol. 2011: 592404- Mirza MS: Obesity, Visceral Fat, and NAFLD: Querying the Role of Adipokines in the Progression of Nonalcoholic Fatty Liver Disease. ISRN Gastroenterol. 2011: 592404-
11.
go back to reference Shertzer HG, Woods SE, Krishan M, Genter MB, Pearson KJ: Dietary whey protein lowers the risk for metabolic disease in mice fed a high-fat diet. J Nutr. 141: 582-587. Shertzer HG, Woods SE, Krishan M, Genter MB, Pearson KJ: Dietary whey protein lowers the risk for metabolic disease in mice fed a high-fat diet. J Nutr. 141: 582-587.
12.
go back to reference Medrikova D, Jilkova ZM, Bardova K, Janovska P, Rossmeisl M, Kopecky J: Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes (Lond). Medrikova D, Jilkova ZM, Bardova K, Janovska P, Rossmeisl M, Kopecky J: Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes (Lond).
13.
go back to reference Macotela Y, Boucher J, Tran TT, Kahn CR: Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009, 58: 803-812. 10.2337/db08-1054.PubMedCentralCrossRefPubMed Macotela Y, Boucher J, Tran TT, Kahn CR: Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009, 58: 803-812. 10.2337/db08-1054.PubMedCentralCrossRefPubMed
14.
go back to reference Moussavi N, Gavino V, Receveur O: Could the quality of dietary fat, and not just its quantity, be related to risk of obesity?. Obesity (Silver Spring). 2008, 16: 7-15. 10.1038/oby.2007.14.CrossRef Moussavi N, Gavino V, Receveur O: Could the quality of dietary fat, and not just its quantity, be related to risk of obesity?. Obesity (Silver Spring). 2008, 16: 7-15. 10.1038/oby.2007.14.CrossRef
15.
go back to reference Funaki M: Saturated fatty acids and insulin resistance. J Med Invest. 2009, 56: 88-92. 10.2152/jmi.56.88.CrossRefPubMed Funaki M: Saturated fatty acids and insulin resistance. J Med Invest. 2009, 56: 88-92. 10.2152/jmi.56.88.CrossRefPubMed
16.
go back to reference Jeong S, Yoon M: 17beta-Estradiol inhibition of PPARgamma-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol Sin. 32: 230-238. Jeong S, Yoon M: 17beta-Estradiol inhibition of PPARgamma-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol Sin. 32: 230-238.
17.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419. 10.1007/BF00280883.CrossRefPubMed
18.
go back to reference Shinohara K, Shoji T, Emoto M, Tahara H, Koyama H, Ishimura E, Miki T, Tabata T, Nishizawa Y: Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol. 2002, 13: 1894-1900. 10.1097/01.ASN.0000019900.87535.43.CrossRefPubMed Shinohara K, Shoji T, Emoto M, Tahara H, Koyama H, Ishimura E, Miki T, Tabata T, Nishizawa Y: Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol. 2002, 13: 1894-1900. 10.1097/01.ASN.0000019900.87535.43.CrossRefPubMed
19.
go back to reference Stender S, Dyerberg J, Astrup A: High levels of industrially produced trans fat in popular fast foods. N Engl J Med. 2006, 354: 1650-1652. 10.1056/NEJMc052959.CrossRefPubMed Stender S, Dyerberg J, Astrup A: High levels of industrially produced trans fat in popular fast foods. N Engl J Med. 2006, 354: 1650-1652. 10.1056/NEJMc052959.CrossRefPubMed
20.
go back to reference Paniagua JA, Gallego de la Sacristana A, Romero I, Vidal-Puig A, Latre JM, Sanchez E, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F: Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 2007, 30: 1717-1723. 10.2337/dc06-2220.CrossRefPubMed Paniagua JA, Gallego de la Sacristana A, Romero I, Vidal-Puig A, Latre JM, Sanchez E, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F: Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 2007, 30: 1717-1723. 10.2337/dc06-2220.CrossRefPubMed
21.
go back to reference Piers LS, Walker KZ, Stoney RM, Soares MJ, O'Dea K: The influence of the type of dietary fat on postprandial fat oxidation rates: monounsaturated (olive oil) vs saturated fat (cream). Int J Obes Relat Metab Disord. 2002, 26: 814-821.CrossRefPubMed Piers LS, Walker KZ, Stoney RM, Soares MJ, O'Dea K: The influence of the type of dietary fat on postprandial fat oxidation rates: monounsaturated (olive oil) vs saturated fat (cream). Int J Obes Relat Metab Disord. 2002, 26: 814-821.CrossRefPubMed
22.
go back to reference Kang SM, Yoon JW, Ahn HY, Kim SY, Lee KH, Shin H, Choi SH, Park KS, Jang HC, Lim S: Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS One. 6: e27694- Kang SM, Yoon JW, Ahn HY, Kim SY, Lee KH, Shin H, Choi SH, Park KS, Jang HC, Lim S: Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS One. 6: e27694-
23.
go back to reference Saad F, Gooren LJ: The role of testosterone in the etiology and treatment of obesity, the metabolic syndrome, and diabetes mellitus type 2. J Obes. 2011: Saad F, Gooren LJ: The role of testosterone in the etiology and treatment of obesity, the metabolic syndrome, and diabetes mellitus type 2. J Obes. 2011:
24.
go back to reference Manco M, Calvani M, Mingrone G: Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab. 2004, 6: 402-413. 10.1111/j.1462-8902.2004.00356.x.CrossRefPubMed Manco M, Calvani M, Mingrone G: Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab. 2004, 6: 402-413. 10.1111/j.1462-8902.2004.00356.x.CrossRefPubMed
25.
go back to reference Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA: The hormone resistin links obesity to diabetes. Nature. 2001, 409: 307-312. 10.1038/35053000.CrossRefPubMed Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA: The hormone resistin links obesity to diabetes. Nature. 2001, 409: 307-312. 10.1038/35053000.CrossRefPubMed
26.
go back to reference Rea R, Donnelly R: Effects of metformin and oleic acid on adipocyte expression of resistin. Diabetes Obes Metab. 2006, 8: 105-109. 10.1111/j.1463-1326.2005.00477.x.CrossRefPubMed Rea R, Donnelly R: Effects of metformin and oleic acid on adipocyte expression of resistin. Diabetes Obes Metab. 2006, 8: 105-109. 10.1111/j.1463-1326.2005.00477.x.CrossRefPubMed
27.
go back to reference Altintas MM, Rossetti MM, Nayer B, Puig A, Zagallo P, Ortega LM, Johnson KB, McNamara G, Reiser J, Mendez AJ, Nayer A: Apoptosis, Mastocytosis, and Diminished Adipocytokine Gene Expression Accompany Reduced Epididymal Fat Mass in Long-Standing Diet-Induced Obese Mice. Lipids Health Dis. 10: 198- Altintas MM, Rossetti MM, Nayer B, Puig A, Zagallo P, Ortega LM, Johnson KB, McNamara G, Reiser J, Mendez AJ, Nayer A: Apoptosis, Mastocytosis, and Diminished Adipocytokine Gene Expression Accompany Reduced Epididymal Fat Mass in Long-Standing Diet-Induced Obese Mice. Lipids Health Dis. 10: 198-
28.
go back to reference Stubbins RE, Najjar K, Holcomb VB, Hong J, Nunez NP: Estrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab. Stubbins RE, Najjar K, Holcomb VB, Hong J, Nunez NP: Estrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab.
29.
go back to reference Koutsari C, Ali AH, Mundi MS, Jensen MD: Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: quantitative measures and implications for body fat distribution. Diabetes. 60: 2032-2040. Koutsari C, Ali AH, Mundi MS, Jensen MD: Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: quantitative measures and implications for body fat distribution. Diabetes. 60: 2032-2040.
30.
go back to reference Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, Wheeler MB, LeRoith D: Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology. 2005, 146: 4024-4035. 10.1210/en.2005-0087.CrossRefPubMed Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, Wheeler MB, LeRoith D: Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology. 2005, 146: 4024-4035. 10.1210/en.2005-0087.CrossRefPubMed
31.
go back to reference Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ: Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab. 2002, 283: E187-192.CrossRefPubMed Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ: Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab. 2002, 283: E187-192.CrossRefPubMed
32.
go back to reference Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, et al: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002, 8: 1288-1295. 10.1038/nm788.CrossRefPubMed Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, et al: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002, 8: 1288-1295. 10.1038/nm788.CrossRefPubMed
33.
go back to reference Kadowaki T, Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev. 2005, 26: 439-451. 10.1210/er.2005-0005.CrossRefPubMed Kadowaki T, Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev. 2005, 26: 439-451. 10.1210/er.2005-0005.CrossRefPubMed
34.
go back to reference Lang CH, Dobrescu C, Bagby GJ: Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992, 130: 43-52. 10.1210/en.130.1.43.PubMed Lang CH, Dobrescu C, Bagby GJ: Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992, 130: 43-52. 10.1210/en.130.1.43.PubMed
35.
go back to reference Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM: The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc. 69: 232-243. Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM: The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc. 69: 232-243.
36.
go back to reference Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH: Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 2009, 8: 25-10.1186/1476-511X-8-25.PubMedCentralCrossRefPubMed Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Chakraborty G, Toney JH: Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 2009, 8: 25-10.1186/1476-511X-8-25.PubMedCentralCrossRefPubMed
38.
go back to reference Warne JP: Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol. 2003, 177: 351-355. 10.1677/joe.0.1770351.CrossRefPubMed Warne JP: Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol. 2003, 177: 351-355. 10.1677/joe.0.1770351.CrossRefPubMed
39.
go back to reference Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B: Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003, 285: E527-533.CrossRefPubMed Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B: Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003, 285: E527-533.CrossRefPubMed
40.
go back to reference Zhao T, Hou M, Xia M, Wang Q, Zhu H, Xiao Y, Tang Z, Ma J, Ling W: Globular adiponectin decreases leptin-induced tumor necrosis factor-alpha expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways. Cell Immunol. 2005, 238: 19-30. 10.1016/j.cellimm.2005.12.002.CrossRefPubMed Zhao T, Hou M, Xia M, Wang Q, Zhu H, Xiao Y, Tang Z, Ma J, Ling W: Globular adiponectin decreases leptin-induced tumor necrosis factor-alpha expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways. Cell Immunol. 2005, 238: 19-30. 10.1016/j.cellimm.2005.12.002.CrossRefPubMed
41.
go back to reference Fernandez-Quintela A, Churruca I, Portillo MP: The role of dietary fat in adipose tissue metabolism. Public Health Nutr. 2007, 10: 1126-1131.CrossRefPubMed Fernandez-Quintela A, Churruca I, Portillo MP: The role of dietary fat in adipose tissue metabolism. Public Health Nutr. 2007, 10: 1126-1131.CrossRefPubMed
43.
go back to reference Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, et al: PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999, 4: 597-609. 10.1016/S1097-2765(00)80210-5.CrossRefPubMed Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, et al: PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999, 4: 597-609. 10.1016/S1097-2765(00)80210-5.CrossRefPubMed
44.
go back to reference Brown JD, Plutzky J: Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007, 115: 518-533. 10.1161/CIRCULATIONAHA.104.475673.CrossRefPubMed Brown JD, Plutzky J: Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007, 115: 518-533. 10.1161/CIRCULATIONAHA.104.475673.CrossRefPubMed
45.
go back to reference Grassi G, Seravalle G, Quarti-Trevano F, Dell'Oro R, Arenare F, Spaziani D, Mancia G: Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009, 53: 205-209.CrossRefPubMed Grassi G, Seravalle G, Quarti-Trevano F, Dell'Oro R, Arenare F, Spaziani D, Mancia G: Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009, 53: 205-209.CrossRefPubMed
46.
go back to reference Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M, Dincer UD, Besch HR: Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes. 2003, 52: 1825-1836. 10.2337/diabetes.52.7.1825.CrossRefPubMed Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M, Dincer UD, Besch HR: Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes. 2003, 52: 1825-1836. 10.2337/diabetes.52.7.1825.CrossRefPubMed
47.
go back to reference Carrero JJ, Fonolla J, Marti JL, Jimenez J, Boza JJ, Lopez-Huertas E: Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr. 2007, 137: 384-390.PubMed Carrero JJ, Fonolla J, Marti JL, Jimenez J, Boza JJ, Lopez-Huertas E: Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr. 2007, 137: 384-390.PubMed
48.
go back to reference Srinivasan K, Ramarao P: Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007, 125: 451-472.PubMed Srinivasan K, Ramarao P: Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007, 125: 451-472.PubMed
Metadata
Title
Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice
Authors
Souhad El Akoum
Vikie Lamontagne
Isabelle Cloutier
Jean-François Tanguay
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2011
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-3-34

Other articles of this Issue 1/2011

Diabetology & Metabolic Syndrome 1/2011 Go to the issue