Skip to main content
Top
Published in: Journal of Ovarian Research 1/2009

Open Access 01-12-2009 | Research

Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells

Authors: Shin Fukuda, Makoto Orisaka, Kimihisa Tajima, Katsushige Hattori, Fumikazu Kotsuji

Published in: Journal of Ovarian Research | Issue 1/2009

Login to get access

Abstract

Background

Theca cells play an important role in controlling ovarian steroidogenesis by providing aromatizable androgens for granulosa cell estrogen biosynthesis. Although it is well established that the steroidogenic activity of theca cells is mainly regulated by LH, the intracellular signal transduction mechanisms that regulate thecal proliferation and/or steroidogenesis remain obscure. In this study, we examined whether and how LH controls the PI3K/Akt signaling pathway and androgen production in bovine theca cells. We also explored whether this LH-induced PI3K/Akt activation is modulated with other signaling pathways (i.e. PKA and MAPK).

Methods

Ovarian theca cells were isolated from bovine small antral follicles and were incubated with LH for various durations. Phospho-Akt and total-Akt content in the cultured theca cells were examined using Western blotting. Androstenedione levels in the spent media were determined using EIA. Semi-quantitative RT-PCR analyses were conducted to analyze the mRNA levels of CYP17A1 and StAR in the theca cells. To examine whether Akt activity is involved in theca cell androgen production, the PI3K inhibitors wortmannin and LY294002 were also added to the cells.

Results

Akt is constitutively expressed, but is gradually phosphorylated in cultured bovine theca cells through exposure to LH. LH significantly increased androstenedione production in bovine theca cells, whereas addition of the wortmannin and LY294002 significantly decreased LH-induced androstenedione production. LH significantly increased CYP17A1 mRNA level in theca cells, whereas addition of LY294002 significantly decreased LH-induced CYP17A1 expression. Neither LH nor PI3K inhibitors alter the mRNA levels of StAR in theca cells. Although H89 (a selective inhibitor of PKA) does not affect LH-mediated changes in Akt, U0126 (a potent MEK inhibitor) suppressed LH-induced Akt phosphorylation, CYP17A1 expression, and androgen production in theca cells.

Conclusion

These results indicate that LH stimulates CYP17 mRNA expression and androgen production in theca cells via activation of the PI3K/Akt pathway. The LH-induced Akt phosphorylation and androgen production are modulated by the MAPK signaling in bovine theca cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Erickson GF, Magoffin DA, Dyer CA, Hofeditz C: The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 1985, 6: 371–99.PubMedCrossRef Erickson GF, Magoffin DA, Dyer CA, Hofeditz C: The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 1985, 6: 371–99.PubMedCrossRef
2.
go back to reference Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, Bondy CA: Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab 1998, 83: 2479–85.PubMedCrossRef Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, Bondy CA: Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab 1998, 83: 2479–85.PubMedCrossRef
3.
go back to reference Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C: Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA 2004, 101: 11209–14.PubMedCentralPubMedCrossRef Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C: Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA 2004, 101: 11209–14.PubMedCentralPubMedCrossRef
5.
go back to reference Erickson GF, Ryan KJ: Stimulation of testosterone production in isolated rabbit thecal tissue by LH/FSH, dibutyryl cyclic AMP, PGE2alpha, and PGE2. Endocrinology 1976, 99: 452–8.PubMedCrossRef Erickson GF, Ryan KJ: Stimulation of testosterone production in isolated rabbit thecal tissue by LH/FSH, dibutyryl cyclic AMP, PGE2alpha, and PGE2. Endocrinology 1976, 99: 452–8.PubMedCrossRef
6.
go back to reference Richards JS, Hedin L, Caston L: Differentiation of rat ovarian thecal cells: evidence for functional luteinization. Endocrinology 1986, 118: 1660–8.PubMedCrossRef Richards JS, Hedin L, Caston L: Differentiation of rat ovarian thecal cells: evidence for functional luteinization. Endocrinology 1986, 118: 1660–8.PubMedCrossRef
7.
go back to reference Bogovich K, Richards JS: Androgen biosynthesis in developing ovarian follicles: evidence that luteinizing hormone regulates thecal 17 alpha-hydroxylase and C17–20-lyase activities. Endocrinology 1982, 111: 1201–8.PubMedCrossRef Bogovich K, Richards JS: Androgen biosynthesis in developing ovarian follicles: evidence that luteinizing hormone regulates thecal 17 alpha-hydroxylase and C17–20-lyase activities. Endocrinology 1982, 111: 1201–8.PubMedCrossRef
8.
go back to reference Magoffin DA, Kurtz KM, Erickson GF: Insulin-like growth factor-I selectively stimulates cholesterol side-chain cleavage expression in ovarian theca-interstitial cells. Mol Endocrinol 1990, 4: 489–96.PubMedCrossRef Magoffin DA, Kurtz KM, Erickson GF: Insulin-like growth factor-I selectively stimulates cholesterol side-chain cleavage expression in ovarian theca-interstitial cells. Mol Endocrinol 1990, 4: 489–96.PubMedCrossRef
9.
go back to reference Magoffin DA, Weitsman SR: Differentiation of ovarian theca-interstitial cells in vitro: regulation of 17 alpha-hydroxylase messenger ribonucleic acid expression by luteinizing hormone and insulin-like growth factor-I. Endocrinology 1993, 132: 1945–51.PubMed Magoffin DA, Weitsman SR: Differentiation of ovarian theca-interstitial cells in vitro: regulation of 17 alpha-hydroxylase messenger ribonucleic acid expression by luteinizing hormone and insulin-like growth factor-I. Endocrinology 1993, 132: 1945–51.PubMed
10.
go back to reference Magoffin DA, Weitsman SR: Insulin-like growth factor-I stimulates the expression of 3 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid in ovarian theca-interstitial cells. Biol Reprod 1993, 48: 1166–73.PubMedCrossRef Magoffin DA, Weitsman SR: Insulin-like growth factor-I stimulates the expression of 3 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid in ovarian theca-interstitial cells. Biol Reprod 1993, 48: 1166–73.PubMedCrossRef
11.
go back to reference Ryan KE, Glister C, Lonergan P, Martin F, Knight PG, Evans AC: Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep. J Ovarian Res 2008, 1: 2.PubMedCentralPubMedCrossRef Ryan KE, Glister C, Lonergan P, Martin F, Knight PG, Evans AC: Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep. J Ovarian Res 2008, 1: 2.PubMedCentralPubMedCrossRef
12.
go back to reference Tajima K, Yoshii K, Fukuda S, Orisaka M, Miyamoto K, Amsterdam A, Kotsuji F: Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 2005, 146: 2903–10.PubMedCrossRef Tajima K, Yoshii K, Fukuda S, Orisaka M, Miyamoto K, Amsterdam A, Kotsuji F: Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 2005, 146: 2903–10.PubMedCrossRef
13.
go back to reference Tilly JL, Pru JK, Rueda BR: Apoptosis in ovarian development, function, and failure. In The ovary 2nd edition. Edited by: Leung PKC, Adashi EY. 2004, 321–52. Tilly JL, Pru JK, Rueda BR: Apoptosis in ovarian development, function, and failure. In The ovary 2nd edition. Edited by: Leung PKC, Adashi EY. 2004, 321–52.
14.
go back to reference Hu CL, Cowan RG, Harman RM, Quirk SM: Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol 2004, 18: 326–38.PubMedCrossRef Hu CL, Cowan RG, Harman RM, Quirk SM: Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol 2004, 18: 326–38.PubMedCrossRef
15.
go back to reference Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–68.PubMedCrossRef Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–68.PubMedCrossRef
16.
go back to reference Hidaka H, Watanabe M, Kobayashi R: Properties and use of H-series compounds as protein kinase inhibitors. Methods Enzymol 1991, 201: 328–39.PubMedCrossRef Hidaka H, Watanabe M, Kobayashi R: Properties and use of H-series compounds as protein kinase inhibitors. Methods Enzymol 1991, 201: 328–39.PubMedCrossRef
17.
go back to reference Ireland JJ, Murphee RL, Coulson PB: Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 1980, 63: 155–60.PubMedCrossRef Ireland JJ, Murphee RL, Coulson PB: Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 1980, 63: 155–60.PubMedCrossRef
18.
go back to reference Tajima K, Orisaka M, Hosokawa K, Amsterdam A, Kotsuji F: Effects of ovarian theca cells on apoptosis and proliferation of granulosa cells: changes during bovine follicular maturation. Biol Reprod 2002, 66: 1635–9.PubMedCrossRef Tajima K, Orisaka M, Hosokawa K, Amsterdam A, Kotsuji F: Effects of ovarian theca cells on apoptosis and proliferation of granulosa cells: changes during bovine follicular maturation. Biol Reprod 2002, 66: 1635–9.PubMedCrossRef
19.
go back to reference Franke TF, Kaplan DR, Cantley LC: PI3K: downstream AKTion blocks apoptosis. Cell 1997, 88: 435–7.PubMedCrossRef Franke TF, Kaplan DR, Cantley LC: PI3K: downstream AKTion blocks apoptosis. Cell 1997, 88: 435–7.PubMedCrossRef
20.
go back to reference Marino M, Acconcia F, Trentalance A: Biphasic estradiol-induced AKT phosphorylation is modulated by PTEN via MAP kinase in HepG2 cells. Mol Biol Cell 2003, 14: 2583–91.PubMedCentralPubMedCrossRef Marino M, Acconcia F, Trentalance A: Biphasic estradiol-induced AKT phosphorylation is modulated by PTEN via MAP kinase in HepG2 cells. Mol Biol Cell 2003, 14: 2583–91.PubMedCentralPubMedCrossRef
21.
go back to reference Carvalho CR, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, Saad MJ: Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 2003, 144: 638–47.PubMedCrossRef Carvalho CR, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, Saad MJ: Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 2003, 144: 638–47.PubMedCrossRef
22.
go back to reference Zerbinatti CV, Mayer LP, Audet RG, Dyer CA: Apolipoprotein E is a putative autocrine regulator of the rat ovarian theca cell compartment. Biol Reprod 2001, 64: 1080–9.PubMedCrossRef Zerbinatti CV, Mayer LP, Audet RG, Dyer CA: Apolipoprotein E is a putative autocrine regulator of the rat ovarian theca cell compartment. Biol Reprod 2001, 64: 1080–9.PubMedCrossRef
23.
go back to reference Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994, 269: 5241–8.PubMed Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994, 269: 5241–8.PubMed
24.
go back to reference Stein RC, Waterfield MD: PI3-kinase inhibition: a target for drug development? Mol Med Today 2000, 6: 347–57.PubMedCrossRef Stein RC, Waterfield MD: PI3-kinase inhibition: a target for drug development? Mol Med Today 2000, 6: 347–57.PubMedCrossRef
25.
go back to reference Gonzalez GA, Montminy MR: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989, 59: 675–80.PubMedCrossRef Gonzalez GA, Montminy MR: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989, 59: 675–80.PubMedCrossRef
26.
go back to reference Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL: Protein kinase A-dependent and -independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol Cell Biol 1999, 19: 5882–91.PubMedCentralPubMed Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL: Protein kinase A-dependent and -independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol Cell Biol 1999, 19: 5882–91.PubMedCentralPubMed
27.
go back to reference Dremier S, Pohl V, Poteet-Smith C, Roger PP, Corbin J, Doskeland SO, et al.: Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol Cell Biol 1997, 17: 6717–26.PubMedCentralPubMed Dremier S, Pohl V, Poteet-Smith C, Roger PP, Corbin J, Doskeland SO, et al.: Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol Cell Biol 1997, 17: 6717–26.PubMedCentralPubMed
28.
go back to reference Kupperman E, Wen W, Meinkoth JL: Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase. Mol Cell Biol 1993, 13: 4477–84.PubMedCentralPubMed Kupperman E, Wen W, Meinkoth JL: Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase. Mol Cell Biol 1993, 13: 4477–84.PubMedCentralPubMed
29.
go back to reference Cass LA, Meinkoth JL: Differential effects of cyclic adenosine 3',5'-monophosphate on p70 ribosomal S6 kinase. Endocrinology 1998, 139: 1991–8.PubMed Cass LA, Meinkoth JL: Differential effects of cyclic adenosine 3',5'-monophosphate on p70 ribosomal S6 kinase. Endocrinology 1998, 139: 1991–8.PubMed
30.
go back to reference de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396: 474–7.PubMedCrossRef de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396: 474–7.PubMedCrossRef
31.
go back to reference Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282: 2275–9.PubMedCrossRef Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282: 2275–9.PubMedCrossRef
32.
go back to reference Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS: Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000, 14: 1283–300.PubMedCrossRef Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS: Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000, 14: 1283–300.PubMedCrossRef
33.
go back to reference Spicer LJ, Voge JL, Allen DT: Insulin-like growth factor-II stimulates steroidogenesis in cultured bovine thecal cells. Mol Cell Endocrinol 2004, 227: 1–7.PubMedCrossRef Spicer LJ, Voge JL, Allen DT: Insulin-like growth factor-II stimulates steroidogenesis in cultured bovine thecal cells. Mol Cell Endocrinol 2004, 227: 1–7.PubMedCrossRef
34.
go back to reference Dissen GA, Parrott JA, Skinner MK, Hill DF, Costa ME, Ojeda SR: Direct effects of nerve growth factor on thecal cells from antral ovarian follicles. Endocrinology 2000, 141: 4736–50.PubMed Dissen GA, Parrott JA, Skinner MK, Hill DF, Costa ME, Ojeda SR: Direct effects of nerve growth factor on thecal cells from antral ovarian follicles. Endocrinology 2000, 141: 4736–50.PubMed
Metadata
Title
Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells
Authors
Shin Fukuda
Makoto Orisaka
Kimihisa Tajima
Katsushige Hattori
Fumikazu Kotsuji
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2009
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/1757-2215-2-17

Other articles of this Issue 1/2009

Journal of Ovarian Research 1/2009 Go to the issue