Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2014

Open Access 01-12-2014 | Research

The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface

Authors: Weijie Fu, Ying Fang, Yu Liu, Jianfu Hou

Published in: Journal of Foot and Ankle Research | Issue 1/2014

Login to get access

Abstract

Background

There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface.

Methods

Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses.

Results

No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively.

Conclusion

These findings provide preliminary evidence suggesting that wearing high-top shoes can, in certain conditions, induce a delayed pre-activation timing and decreased amplitude of evertor muscle activity, and may therefore have a detrimental effect on establishing and maintaining functional ankle joint stability.
Appendix
Available only for authorised users
Literature
1.
go back to reference McKay GD, Goldie PA, Payne WR, Oakes BW: Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001, 35: 103-108. 10.1136/bjsm.35.2.103.CrossRefPubMedPubMedCentral McKay GD, Goldie PA, Payne WR, Oakes BW: Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001, 35: 103-108. 10.1136/bjsm.35.2.103.CrossRefPubMedPubMedCentral
2.
go back to reference Leanderson J, Nemeth G, Eriksson E: Ankle injuries in basketball players. Knee Surg Sports Traumatol Arthrosc. 1993, 1: 200-202. 10.1007/BF01560206.CrossRefPubMed Leanderson J, Nemeth G, Eriksson E: Ankle injuries in basketball players. Knee Surg Sports Traumatol Arthrosc. 1993, 1: 200-202. 10.1007/BF01560206.CrossRefPubMed
3.
go back to reference Wright IC, Neptune RR, van den Bogert AJ, Nigg BM: The influence of foot positioning on ankle sprains. J Biomech. 2000, 33: 513-519. 10.1016/S0021-9290(99)00218-3.CrossRefPubMed Wright IC, Neptune RR, van den Bogert AJ, Nigg BM: The influence of foot positioning on ankle sprains. J Biomech. 2000, 33: 513-519. 10.1016/S0021-9290(99)00218-3.CrossRefPubMed
4.
go back to reference Ashton-Miller JA, Ottaviani RA, Hutchinson C, Wojtys EM: What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am J Sports Med. 1996, 24: 800-809. 10.1177/036354659602400616.CrossRefPubMed Ashton-Miller JA, Ottaviani RA, Hutchinson C, Wojtys EM: What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am J Sports Med. 1996, 24: 800-809. 10.1177/036354659602400616.CrossRefPubMed
5.
go back to reference Verhagen EA, van der Beek AJ, van Mechelen W: The effect of tape, braces and shoes on ankle range of motion. Sports Med. 2001, 31: 667-677. 10.2165/00007256-200131090-00003.CrossRefPubMed Verhagen EA, van der Beek AJ, van Mechelen W: The effect of tape, braces and shoes on ankle range of motion. Sports Med. 2001, 31: 667-677. 10.2165/00007256-200131090-00003.CrossRefPubMed
6.
go back to reference Garrick JG, Requa RK: Role of external support in the prevention of ankle sprains. Med Sci Sports. 1973, 5: 200-203.PubMed Garrick JG, Requa RK: Role of external support in the prevention of ankle sprains. Med Sci Sports. 1973, 5: 200-203.PubMed
7.
go back to reference Robinson JR, Frederick EC, Cooper LB: Systematic ankle stabilization and the effect on performance. Med Sci Sports Exerc. 1986, 18: 625-628.CrossRefPubMed Robinson JR, Frederick EC, Cooper LB: Systematic ankle stabilization and the effect on performance. Med Sci Sports Exerc. 1986, 18: 625-628.CrossRefPubMed
8.
go back to reference Ottaviani RA, Ashton-Miller JA, Kothari SU, Wojtys EM: Basketball shoe height and the maximal muscular resistance to applied ankle inversion and eversion moments. Am J Sports Med. 1995, 23: 418-423. 10.1177/036354659502300408.CrossRefPubMed Ottaviani RA, Ashton-Miller JA, Kothari SU, Wojtys EM: Basketball shoe height and the maximal muscular resistance to applied ankle inversion and eversion moments. Am J Sports Med. 1995, 23: 418-423. 10.1177/036354659502300408.CrossRefPubMed
9.
go back to reference Ricard MD, Schulties SS, Saret JJ: Effects of high-top and low-top shoes on ankle inversion. J Athl Train. 2000, 35: 38-43.PubMedPubMedCentral Ricard MD, Schulties SS, Saret JJ: Effects of high-top and low-top shoes on ankle inversion. J Athl Train. 2000, 35: 38-43.PubMedPubMedCentral
10.
go back to reference Barrett J, Bilisko T: The role of shoes in the prevention of ankle sprains. Sports Med. 1995, 20: 277-280. 10.2165/00007256-199520040-00005.CrossRefPubMed Barrett J, Bilisko T: The role of shoes in the prevention of ankle sprains. Sports Med. 1995, 20: 277-280. 10.2165/00007256-199520040-00005.CrossRefPubMed
11.
go back to reference Barrett JR, Tanji JL, Drake C, Fuller D, Kawasaki RI, Fenton RM: High- versus low-top shoes for the prevention of ankle sprains in basketball players. A prospective randomized study. Am J Sports Med. 1993, 21: 582-585. 10.1177/036354659302100416.CrossRefPubMed Barrett JR, Tanji JL, Drake C, Fuller D, Kawasaki RI, Fenton RM: High- versus low-top shoes for the prevention of ankle sprains in basketball players. A prospective randomized study. Am J Sports Med. 1993, 21: 582-585. 10.1177/036354659302100416.CrossRefPubMed
12.
go back to reference Handoll HH, Rowe BH, Quinn KM, de Bie R: Interventions for preventing ankle ligament injuries. Cochrane Database Syst Rev. 2001, CD000018- Handoll HH, Rowe BH, Quinn KM, de Bie R: Interventions for preventing ankle ligament injuries. Cochrane Database Syst Rev. 2001, CD000018-
13.
go back to reference Rovere GD, Clarke TJ, Yates CS, Burley K: Retrospective comparison of taping and ankle stabilizers in preventing ankle injuries. Am J Sports Med. 1988, 16: 228-233. 10.1177/036354658801600305.CrossRefPubMed Rovere GD, Clarke TJ, Yates CS, Burley K: Retrospective comparison of taping and ankle stabilizers in preventing ankle injuries. Am J Sports Med. 1988, 16: 228-233. 10.1177/036354658801600305.CrossRefPubMed
14.
go back to reference Gottschalk AW, Pepple DA: Shoe wear and the prevention of ankle sprains. Evid-Based Pract. 2011, 14: 13- Gottschalk AW, Pepple DA: Shoe wear and the prevention of ankle sprains. Evid-Based Pract. 2011, 14: 13-
15.
go back to reference Kerr R, Arnold GP, Drew TS, Cochrane LA, Abboud RJ: Shoes influence lower limb muscle activity and may predispose the wearer to lateral ankle ligament injury. J Orthop Res. 2009, 27: 318-324. 10.1002/jor.20744.CrossRefPubMed Kerr R, Arnold GP, Drew TS, Cochrane LA, Abboud RJ: Shoes influence lower limb muscle activity and may predispose the wearer to lateral ankle ligament injury. J Orthop Res. 2009, 27: 318-324. 10.1002/jor.20744.CrossRefPubMed
16.
go back to reference Knight AC, Weimar WH: Effects of inversion perturbation after step down on the latency of the peroneus longus and peroneus brevis. J Appl Biomech. 2011, 27: 283-290.PubMed Knight AC, Weimar WH: Effects of inversion perturbation after step down on the latency of the peroneus longus and peroneus brevis. J Appl Biomech. 2011, 27: 283-290.PubMed
17.
go back to reference Ramanathan AK, Wallace DT, Arnold GP, Drew TS, Wang W, Abboud RJ: The effect of varying footwear configurations on the peroneus longus muscle function following inversion. Foot (Edinb). 2011, 21: 31-36. 10.1016/j.foot.2010.11.001.CrossRef Ramanathan AK, Wallace DT, Arnold GP, Drew TS, Wang W, Abboud RJ: The effect of varying footwear configurations on the peroneus longus muscle function following inversion. Foot (Edinb). 2011, 21: 31-36. 10.1016/j.foot.2010.11.001.CrossRef
18.
go back to reference Knight AC, Weimar WH: Effects of previous lateral ankle sprain and taping on the latency of the peroneus longus. Sports Biomech. 2012, 11: 48-56. 10.1080/14763141.2011.637121.CrossRefPubMed Knight AC, Weimar WH: Effects of previous lateral ankle sprain and taping on the latency of the peroneus longus. Sports Biomech. 2012, 11: 48-56. 10.1080/14763141.2011.637121.CrossRefPubMed
19.
go back to reference Santello M, McDonagh MJ: The control of timing and amplitude of EMG activity in landing movements in humans. Exp Physiol. 1998, 83: 857-874.CrossRefPubMed Santello M, McDonagh MJ: The control of timing and amplitude of EMG activity in landing movements in humans. Exp Physiol. 1998, 83: 857-874.CrossRefPubMed
20.
go back to reference Funase K, Higashi T, Sakakibara A, Imanaka K, Nishihira Y, Miles TS: Patterns of muscle activation in human hopping. Eur J Appl Physiol. 2001, 84: 503-509. 10.1007/s004210100414.CrossRefPubMed Funase K, Higashi T, Sakakibara A, Imanaka K, Nishihira Y, Miles TS: Patterns of muscle activation in human hopping. Eur J Appl Physiol. 2001, 84: 503-509. 10.1007/s004210100414.CrossRefPubMed
21.
go back to reference Neptune RR, Wright IC, van den Bogert AJ: Muscle coordination and function during cutting movements. Med Sci Sports Exerc. 1999, 31: 294-302. 10.1097/00005768-199902000-00014.CrossRefPubMed Neptune RR, Wright IC, van den Bogert AJ: Muscle coordination and function during cutting movements. Med Sci Sports Exerc. 1999, 31: 294-302. 10.1097/00005768-199902000-00014.CrossRefPubMed
22.
go back to reference Mrdakovic V, Ilic DB, Jankovic N, Rajkovic Z, Stefanovic D: Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J Sports Sci Med. 2008, 7: 269-278.PubMedPubMedCentral Mrdakovic V, Ilic DB, Jankovic N, Rajkovic Z, Stefanovic D: Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J Sports Sci Med. 2008, 7: 269-278.PubMedPubMedCentral
23.
go back to reference Santello M: Review of motor control mechanisms underlying impact absorption from falls. Gait Posture. 2005, 21: 85-94. 10.1016/j.gaitpost.2004.01.005.CrossRefPubMed Santello M: Review of motor control mechanisms underlying impact absorption from falls. Gait Posture. 2005, 21: 85-94. 10.1016/j.gaitpost.2004.01.005.CrossRefPubMed
24.
go back to reference Horita T, Komi PV, Nicol C, Kyrolainen H: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance. Eur J Appl Physiol. 2002, 88: 76-84. 10.1007/s00421-002-0673-6.CrossRefPubMed Horita T, Komi PV, Nicol C, Kyrolainen H: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance. Eur J Appl Physiol. 2002, 88: 76-84. 10.1007/s00421-002-0673-6.CrossRefPubMed
25.
go back to reference Cordova ML, Ingersoll CD: Peroneus longus stretch reflex amplitude increases after ankle brace application. Br J Sports Med. 2003, 37: 258-262. 10.1136/bjsm.37.3.258.CrossRefPubMedPubMedCentral Cordova ML, Ingersoll CD: Peroneus longus stretch reflex amplitude increases after ankle brace application. Br J Sports Med. 2003, 37: 258-262. 10.1136/bjsm.37.3.258.CrossRefPubMedPubMedCentral
26.
go back to reference Kernozek T, Durall CJ, Friske A, Mussallem M: Ankle bracing, plantar-flexion angle, and ankle muscle latencies during inversion stress in healthy participants. J Athl Train. 2008, 43: 37-43. 10.4085/1062-6050-43.1.37.CrossRefPubMedPubMedCentral Kernozek T, Durall CJ, Friske A, Mussallem M: Ankle bracing, plantar-flexion angle, and ankle muscle latencies during inversion stress in healthy participants. J Athl Train. 2008, 43: 37-43. 10.4085/1062-6050-43.1.37.CrossRefPubMedPubMedCentral
27.
go back to reference Mitchell A, Dyson R, Hale T, Abraham C: Biomechanics of ankle instability. Part 1: Reaction time to simulated ankle sprain. Med Sci Sports Exerc. 2008, 40: 1515-1521. 10.1249/MSS.0b013e31817356b6.CrossRefPubMed Mitchell A, Dyson R, Hale T, Abraham C: Biomechanics of ankle instability. Part 1: Reaction time to simulated ankle sprain. Med Sci Sports Exerc. 2008, 40: 1515-1521. 10.1249/MSS.0b013e31817356b6.CrossRefPubMed
28.
go back to reference Knight AC, Weimar WH: Development of a fulcrum methodology to replicate the lateral ankle sprain mechanism and measure dynamic inversion speed. Sports Biomech. 2012, 11: 402-413. 10.1080/14763141.2011.638724.CrossRefPubMed Knight AC, Weimar WH: Development of a fulcrum methodology to replicate the lateral ankle sprain mechanism and measure dynamic inversion speed. Sports Biomech. 2012, 11: 402-413. 10.1080/14763141.2011.638724.CrossRefPubMed
29.
go back to reference Chen Q, Wortley M, Bhaskaran D, Milner CE, Zhang S: Is the inverted surface landing more suitable in evaluating ankle braces and ankle inversion perturbation?. Clin J Sport Med. 2012, 22: 214-220. 10.1097/JSM.0b013e318248e5f6.CrossRefPubMed Chen Q, Wortley M, Bhaskaran D, Milner CE, Zhang S: Is the inverted surface landing more suitable in evaluating ankle braces and ankle inversion perturbation?. Clin J Sport Med. 2012, 22: 214-220. 10.1097/JSM.0b013e318248e5f6.CrossRefPubMed
30.
go back to reference Venesky K, Docherty CL, Dapena J, Schrader J: Prophylactic ankle braces and knee varus-valgus and internal-external rotation torque. J Athl Train. 2006, 41: 239-244.PubMedPubMedCentral Venesky K, Docherty CL, Dapena J, Schrader J: Prophylactic ankle braces and knee varus-valgus and internal-external rotation torque. J Athl Train. 2006, 41: 239-244.PubMedPubMedCentral
31.
go back to reference Lynch SA, Eklund U, Gottlieb D, Renstrom PA, Beynnon B: Electromyographic latency changes in the ankle musculature during inversion moments. Am J Sports Med. 1996, 24: 362-369. 10.1177/036354659602400319.CrossRefPubMed Lynch SA, Eklund U, Gottlieb D, Renstrom PA, Beynnon B: Electromyographic latency changes in the ankle musculature during inversion moments. Am J Sports Med. 1996, 24: 362-369. 10.1177/036354659602400319.CrossRefPubMed
32.
go back to reference Fong DT, Hong Y, Shima Y, Krosshaug T, Yung PS, Chan KM: Biomechanics of supination ankle sprain: a case report of an accidental injury event in the laboratory. Am J Sports Med. 2009, 37: 822-827. 10.1177/0363546508328102.CrossRefPubMed Fong DT, Hong Y, Shima Y, Krosshaug T, Yung PS, Chan KM: Biomechanics of supination ankle sprain: a case report of an accidental injury event in the laboratory. Am J Sports Med. 2009, 37: 822-827. 10.1177/0363546508328102.CrossRefPubMed
33.
go back to reference Fu W, Liu Y, Zhang S: Effects of footwear on impact forces and soft tissue vibrations during drop jumps and unanticipated drop landings. Int J Sports Med. 2013, 34: 477-483.PubMed Fu W, Liu Y, Zhang S: Effects of footwear on impact forces and soft tissue vibrations during drop jumps and unanticipated drop landings. Int J Sports Med. 2013, 34: 477-483.PubMed
34.
go back to reference Zhang S, Wortley M, Silvernail JF, Carson D, Paquette MR: Do ankle braces provide similar effects on ankle biomechanical variables in subjects with and without chronic ankle instability during landing?. J Sport Health Sci. 2012, 1: 114-120. 10.1016/j.jshs.2012.07.002.CrossRef Zhang S, Wortley M, Silvernail JF, Carson D, Paquette MR: Do ankle braces provide similar effects on ankle biomechanical variables in subjects with and without chronic ankle instability during landing?. J Sport Health Sci. 2012, 1: 114-120. 10.1016/j.jshs.2012.07.002.CrossRef
35.
go back to reference Li L, Lorna LO: Muscular activity characteristics associated with preparation for gait transition. J Sport Health Sci. 2012, 1: 27-35. 10.1016/j.jshs.2012.04.006.CrossRef Li L, Lorna LO: Muscular activity characteristics associated with preparation for gait transition. J Sport Health Sci. 2012, 1: 27-35. 10.1016/j.jshs.2012.04.006.CrossRef
36.
go back to reference Fu W, Liu Y, Zhang S, Xiong X, Wei S: Effects of local elastic compression on muscle strength, electromyographic, and mechanomyographic responses in the lower extremity. J Electromyogr Kinesiol. 2012, 22: 44-50. 10.1016/j.jelekin.2011.10.005.CrossRefPubMed Fu W, Liu Y, Zhang S, Xiong X, Wei S: Effects of local elastic compression on muscle strength, electromyographic, and mechanomyographic responses in the lower extremity. J Electromyogr Kinesiol. 2012, 22: 44-50. 10.1016/j.jelekin.2011.10.005.CrossRefPubMed
37.
go back to reference Hodges PW, Bui BH: A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996, 101: 511-519.PubMed Hodges PW, Bui BH: A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996, 101: 511-519.PubMed
38.
go back to reference Inglis JT, Horak FB, Shupert CL, Jones-Rycewicz C: The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Exp Brain Res. 1994, 101: 159-164.CrossRefPubMed Inglis JT, Horak FB, Shupert CL, Jones-Rycewicz C: The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Exp Brain Res. 1994, 101: 159-164.CrossRefPubMed
39.
go back to reference Li JX, Xu DQ, Hong Y: Changes in muscle strength, endurance, and reaction of the lower extremities with Tai Chi intervention. J Biomech. 2009, 42: 967-971. 10.1016/j.jbiomech.2009.03.001.CrossRefPubMed Li JX, Xu DQ, Hong Y: Changes in muscle strength, endurance, and reaction of the lower extremities with Tai Chi intervention. J Biomech. 2009, 42: 967-971. 10.1016/j.jbiomech.2009.03.001.CrossRefPubMed
40.
go back to reference Stacoff A, Avramakis E, Siegenthaler R, Stussi E: High-cut shoes and lateral heel stability during cutting movements in floorball. J Biomech. 1998, 31: 178-CrossRef Stacoff A, Avramakis E, Siegenthaler R, Stussi E: High-cut shoes and lateral heel stability during cutting movements in floorball. J Biomech. 1998, 31: 178-CrossRef
41.
go back to reference Brizuela G, Llana S, Ferrandis R, Garcia-Belenguer AC: The influence of basketball shoes with increased ankle support on shock attenuation and performance in running and jumping. J Sports Sci. 1997, 15: 505-515. 10.1080/026404197367146.CrossRefPubMed Brizuela G, Llana S, Ferrandis R, Garcia-Belenguer AC: The influence of basketball shoes with increased ankle support on shock attenuation and performance in running and jumping. J Sports Sci. 1997, 15: 505-515. 10.1080/026404197367146.CrossRefPubMed
42.
go back to reference Robbins S, Waked E, Rappel R: Ankle taping improves proprioception before and after exercise in young men. Br J Sports Med. 1995, 29: 242-247. 10.1136/bjsm.29.4.242.CrossRefPubMedPubMedCentral Robbins S, Waked E, Rappel R: Ankle taping improves proprioception before and after exercise in young men. Br J Sports Med. 1995, 29: 242-247. 10.1136/bjsm.29.4.242.CrossRefPubMedPubMedCentral
43.
go back to reference Papadopoulos ES, Nikolopoulos C, Badekas A, Vagenas G, Papadakis SA, Athanasopoulos S: The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles. BMC Musculoskelet Disord. 2007, 8: 89-10.1186/1471-2474-8-89.CrossRefPubMedPubMedCentral Papadopoulos ES, Nikolopoulos C, Badekas A, Vagenas G, Papadakis SA, Athanasopoulos S: The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles. BMC Musculoskelet Disord. 2007, 8: 89-10.1186/1471-2474-8-89.CrossRefPubMedPubMedCentral
44.
go back to reference Santello M, McDonagh MJ, Challis JH: Visual and non-visual control of landing movements in humans. J Physiol Lond. 2001, 537: 313-327. 10.1111/j.1469-7793.2001.0313k.x.CrossRefPubMedPubMedCentral Santello M, McDonagh MJ, Challis JH: Visual and non-visual control of landing movements in humans. J Physiol Lond. 2001, 537: 313-327. 10.1111/j.1469-7793.2001.0313k.x.CrossRefPubMedPubMedCentral
45.
go back to reference Liebermann DG, Goodman D: Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions. J Electromyogr Kinesiol. 2007, 17: 212-227. 10.1016/j.jelekin.2006.01.011.CrossRefPubMed Liebermann DG, Goodman D: Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions. J Electromyogr Kinesiol. 2007, 17: 212-227. 10.1016/j.jelekin.2006.01.011.CrossRefPubMed
Metadata
Title
The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface
Authors
Weijie Fu
Ying Fang
Yu Liu
Jianfu Hou
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2014
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-14

Other articles of this Issue 1/2014

Journal of Foot and Ankle Research 1/2014 Go to the issue