Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2010

Open Access 01-12-2010 | Research

Anti-HER-2 engineering antibody ChA21 inhibits growth and induces apoptosis of SK-OV-3 cells

Authors: AnLi Zhang, Hua Xue, XiaoGuang Ling, Yi Gao, Feng Yang, LianSheng Cheng, Jing Liu, Qiang Wu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2010

Login to get access

Abstract

Background and Aims

Anti-HER-2 antibodies targeting distinct epitopes have different biological functions on cancer cells. In a previous study, we demonstrated that anti-HER-2 engineering antibody ChA21 was able to bind to subdomain I of HER-2 extracellular domain. In this study, The effects of ChA21 on growth and apoptosis against ovarian carcinoma cell SK-OV-3 over-expressing HER-2 in vitro and in vivo were investigated.

Methods

Cell growth inhibition was evaluated by MTT assay. Apoptosis was detected by TUNEL stain, transmission electron microscopy and flow cytometry on cultured cells and tissue sections from nude mice xenografts. The apoptosis-related proteins Bax and Bcl-2 were assessed by immunohistochemistry.

Results

We found that treatment of ChA21 caused a dose-dependent decrease of cell proliferation in vitro and a significant inhibition of tumor growth in vivo. ChA21 therapy led to a significant increase in the induction of apoptosis, and up-regulated the expression of Bax, while the expression of Bcl-2 was down-regulated.

Conclusion

These data suggest that ChA21 inhibits the growth and induces apoptosis of SK-OV-3 via regulating the balance between Bax and Bcl-2.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, et al: Cancer statistics. Cancer Journal for Clinicians. 2008, 58: 71-96. 10.3322/CA.2007.0010.CrossRef Jemal A, Siegel R, Ward E, et al: Cancer statistics. Cancer Journal for Clinicians. 2008, 58: 71-96. 10.3322/CA.2007.0010.CrossRef
2.
go back to reference Breedlove G, Busenhart C: Screening and detection of ovarian cancer. Journal of Midwifery & Women's Health. 2005, 50: 51-54.CrossRef Breedlove G, Busenhart C: Screening and detection of ovarian cancer. Journal of Midwifery & Women's Health. 2005, 50: 51-54.CrossRef
3.
go back to reference Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009, 9: 415-428. 10.1038/nrc2644.CrossRef Bast RC, Hennessy B, Mills GB: The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009, 9: 415-428. 10.1038/nrc2644.CrossRef
4.
go back to reference Carpenter G: Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987, 56: 881-914. 10.1146/annurev.bi.56.070187.004313.CrossRef Carpenter G: Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987, 56: 881-914. 10.1146/annurev.bi.56.070187.004313.CrossRef
5.
go back to reference Coussens L, Yang-Feng TL, Liao YC, et al: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985, 230: 1132-1139. 10.1126/science.2999974.CrossRef Coussens L, Yang-Feng TL, Liao YC, et al: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 1985, 230: 1132-1139. 10.1126/science.2999974.CrossRef
6.
go back to reference Popescu NC, King CR, Kraus MH: Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 1989, 4: 362-366. 10.1016/0888-7543(89)90343-1.CrossRef Popescu NC, King CR, Kraus MH: Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 1989, 4: 362-366. 10.1016/0888-7543(89)90343-1.CrossRef
7.
go back to reference Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001, 2: 127-137. 10.1038/35052073.CrossRef Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001, 2: 127-137. 10.1038/35052073.CrossRef
8.
go back to reference Slamon DJ, Godolphin W, Jones LA: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989, 244: 707-712. 10.1126/science.2470152.CrossRef Slamon DJ, Godolphin W, Jones LA: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989, 244: 707-712. 10.1126/science.2470152.CrossRef
9.
go back to reference Verri E, Guglielmini P, Puntoni M: HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Oncology. 2005, 68: 154-161. 10.1159/000086958.CrossRef Verri E, Guglielmini P, Puntoni M: HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Oncology. 2005, 68: 154-161. 10.1159/000086958.CrossRef
10.
go back to reference Cheng JD, Rieger PT, von Mehren M: Recent advances in immunotherapy and monoclonal antibody treatment of cancer. Semin Oncol Nurs. 2000, 16: 2-12. 10.1053/sonu.2000.19775.CrossRef Cheng JD, Rieger PT, von Mehren M: Recent advances in immunotherapy and monoclonal antibody treatment of cancer. Semin Oncol Nurs. 2000, 16: 2-12. 10.1053/sonu.2000.19775.CrossRef
11.
go back to reference Bell Richard: What Can We Learn from Herceptin Trials in Metastatic Breast Cancer?. Oncology. 2002, 63: 39-46. 10.1159/000066200.CrossRef Bell Richard: What Can We Learn from Herceptin Trials in Metastatic Breast Cancer?. Oncology. 2002, 63: 39-46. 10.1159/000066200.CrossRef
12.
go back to reference Cuello Mauricio, Seth A, Ettenberg , Amy S, et al: Down-Regulation of the erbB-2 Receptor by Trastuzumab (Herceptin) Enhances Tumor Necrosis Factor-related Apoptosis-inducing Ligand-mediated Apoptosis in Breast and Ovarian Cancer Cell Lines that Overexpress erbB-2. Cancer Res. 2001, 61: 4892-900. Cuello Mauricio, Seth A, Ettenberg , Amy S, et al: Down-Regulation of the erbB-2 Receptor by Trastuzumab (Herceptin) Enhances Tumor Necrosis Factor-related Apoptosis-inducing Ligand-mediated Apoptosis in Breast and Ovarian Cancer Cell Lines that Overexpress erbB-2. Cancer Res. 2001, 61: 4892-900.
13.
go back to reference Cho HS, Mason K, Ramyar KX, et al: Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003, 421: 756-760. 10.1038/nature01392.CrossRef Cho HS, Mason K, Ramyar KX, et al: Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003, 421: 756-760. 10.1038/nature01392.CrossRef
14.
go back to reference Fujimura M, Katsumata N, Tsuda H, et al: HER2 Is Frequently Over-expressed in Ovarian Clear Cell Adenocarcinoma: Possible Novel Treatment Modality Using Recombinant Monoclonal Antibody against HER2, Trastuzumab. Jpn J Cancer Res. 2002, 93: 1250-1257.CrossRef Fujimura M, Katsumata N, Tsuda H, et al: HER2 Is Frequently Over-expressed in Ovarian Clear Cell Adenocarcinoma: Possible Novel Treatment Modality Using Recombinant Monoclonal Antibody against HER2, Trastuzumab. Jpn J Cancer Res. 2002, 93: 1250-1257.CrossRef
15.
go back to reference Dean-Colomb W, Esteva FJ: Her2-positive breast cancer: herceptin and beyond. Eur J Cancer. 2008, 44: 2806-2812. 10.1016/j.ejca.2008.09.013.CrossRef Dean-Colomb W, Esteva FJ: Her2-positive breast cancer: herceptin and beyond. Eur J Cancer. 2008, 44: 2806-2812. 10.1016/j.ejca.2008.09.013.CrossRef
16.
go back to reference Cheng LS, Liu AP, Yang JH: Construction, expression and characterization of the engineered antibody against tumor surface antigen, p185(c-erbB-2). Cell Res. 2003, 13: 35-48. 10.1038/sj.cr.7290149.CrossRef Cheng LS, Liu AP, Yang JH: Construction, expression and characterization of the engineered antibody against tumor surface antigen, p185(c-erbB-2). Cell Res. 2003, 13: 35-48. 10.1038/sj.cr.7290149.CrossRef
17.
go back to reference Wang Jing, Shi Yu, Liu Yanqi: Purification and characterization of a single-chain chimeric anti-p185 antibody expressed by CHO-GS system. Protein expression and purification. 2005, 41: 68-76. 10.1016/j.pep.2004.11.007.CrossRef Wang Jing, Shi Yu, Liu Yanqi: Purification and characterization of a single-chain chimeric anti-p185 antibody expressed by CHO-GS system. Protein expression and purification. 2005, 41: 68-76. 10.1016/j.pep.2004.11.007.CrossRef
18.
go back to reference Hu S, Zhu Z, Li L, et al: Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: Molecular basis for tumor inhibitory mechanism. Proteins. 2008, 70: 938-949. 10.1002/prot.21551.CrossRef Hu S, Zhu Z, Li L, et al: Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: Molecular basis for tumor inhibitory mechanism. Proteins. 2008, 70: 938-949. 10.1002/prot.21551.CrossRef
19.
go back to reference Wang C, Li Y, Li P: Generation and Characterization of monoclonal antibodies specific for the oncogene product P185neu/c-erbB-2 by surface epitope masking (SEM). J Chin Immunol. 2000, 16: 539-541. Wang C, Li Y, Li P: Generation and Characterization of monoclonal antibodies specific for the oncogene product P185neu/c-erbB-2 by surface epitope masking (SEM). J Chin Immunol. 2000, 16: 539-541.
20.
go back to reference Ping LI, Yun LI, Chen Wang: Investigation on the anti-cancer activities of anti-p185 monoclonal antibodies in vitro. Chin Immunol. 2002, 18: 33-35. Ping LI, Yun LI, Chen Wang: Investigation on the anti-cancer activities of anti-p185 monoclonal antibodies in vitro. Chin Immunol. 2002, 18: 33-35.
21.
go back to reference Steffen AC, Göstring L, Tolmachev V, et al: Differences in radiosensitivity between three HER2 overexpressing cell lines. Eur J Nucl Med Mol I. 2008, 35: 1179-1191. 10.1007/s00259-007-0713-x.CrossRef Steffen AC, Göstring L, Tolmachev V, et al: Differences in radiosensitivity between three HER2 overexpressing cell lines. Eur J Nucl Med Mol I. 2008, 35: 1179-1191. 10.1007/s00259-007-0713-x.CrossRef
22.
go back to reference Sujun L, Xun L, Daxu L, et al: Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. International Immunopharmacology. 2006, 6: 1387-1393. 10.1016/j.intimp.2006.02.002.CrossRef Sujun L, Xun L, Daxu L, et al: Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. International Immunopharmacology. 2006, 6: 1387-1393. 10.1016/j.intimp.2006.02.002.CrossRef
23.
go back to reference Jackson JG, St Clair P, Sliwkowski MX, et al: Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res. 2004, 64: 2601-2609. 10.1158/0008-5472.CAN-03-3106.CrossRef Jackson JG, St Clair P, Sliwkowski MX, et al: Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res. 2004, 64: 2601-2609. 10.1158/0008-5472.CAN-03-3106.CrossRef
24.
go back to reference Vogel CL, Cobleigh MA, Tripathy D, et al: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002, 18: 719-726. 10.1200/JCO.20.3.719.CrossRef Vogel CL, Cobleigh MA, Tripathy D, et al: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002, 18: 719-726. 10.1200/JCO.20.3.719.CrossRef
25.
go back to reference Perez EA: Cardiac toxicity of ErbB2-targeted therapies: what do we know?. Clin Breast Cancer. 2008, 8: 114-120. 10.3816/CBC.2008.s.007.CrossRef Perez EA: Cardiac toxicity of ErbB2-targeted therapies: what do we know?. Clin Breast Cancer. 2008, 8: 114-120. 10.3816/CBC.2008.s.007.CrossRef
26.
go back to reference Hattori K, Nishi Y, Nakamura S: Evaluation of cardiac dysfunction after herceptin treatment in patients with metastatic breast cancer by echocardiography. Rinsho Byori. 2007, 55: 120-125. Hattori K, Nishi Y, Nakamura S: Evaluation of cardiac dysfunction after herceptin treatment in patients with metastatic breast cancer by echocardiography. Rinsho Byori. 2007, 55: 120-125.
27.
go back to reference Vahid B, Marik PE: Pulmonary complications of novel antineoplastic agents for solid tumors. Chest. 2008, 133: 528-538. 10.1378/chest.07-0851.CrossRef Vahid B, Marik PE: Pulmonary complications of novel antineoplastic agents for solid tumors. Chest. 2008, 133: 528-538. 10.1378/chest.07-0851.CrossRef
28.
go back to reference Slamon DJ, Leyland-Jones B, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001, 344: 783-792. 10.1056/NEJM200103153441101.CrossRef Slamon DJ, Leyland-Jones B, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001, 344: 783-792. 10.1056/NEJM200103153441101.CrossRef
29.
go back to reference Calabrich A, Fernandes Gdos S, Katz A: Trastuzumab: mechanisms of resistance and therapeutic opportunities. Oncology (Williston Park). 2008, 22: 1250-1258. Calabrich A, Fernandes Gdos S, Katz A: Trastuzumab: mechanisms of resistance and therapeutic opportunities. Oncology (Williston Park). 2008, 22: 1250-1258.
30.
go back to reference Chen MH: Cardiac dysfunction induced by novel targeted anticancer therapy: an emerging issue. Curr Cardiol Rep. 2009, 11: 167-174. 10.1007/s11886-009-0025-9.CrossRef Chen MH: Cardiac dysfunction induced by novel targeted anticancer therapy: an emerging issue. Curr Cardiol Rep. 2009, 11: 167-174. 10.1007/s11886-009-0025-9.CrossRef
31.
go back to reference Wang JN, Feng JN, Yua M: Structural analysis of the epitopes on erbB2 interacted with inhibitory or non-inhibitor monoclonal antibodies. Mol Immu nol. 2004, 40: 963-969. 10.1016/j.molimm.2003.09.012.CrossRef Wang JN, Feng JN, Yua M: Structural analysis of the epitopes on erbB2 interacted with inhibitory or non-inhibitor monoclonal antibodies. Mol Immu nol. 2004, 40: 963-969. 10.1016/j.molimm.2003.09.012.CrossRef
32.
go back to reference Tortora G, di Isernia G, Sandomenico C, et al: Synergistic inhibition of growth and induction of apoptosis by 8-chloro-cAMP and paclitaxel or cisplatin in human cancer cells. Cancer Res. 1997, 57: 5107-5111. Tortora G, di Isernia G, Sandomenico C, et al: Synergistic inhibition of growth and induction of apoptosis by 8-chloro-cAMP and paclitaxel or cisplatin in human cancer cells. Cancer Res. 1997, 57: 5107-5111.
33.
go back to reference Cummings MC, Winterford CM, Walker NL: Apoptosis. Am J Surg Pathol. 1997, 21: 88-101. 10.1097/00000478-199701000-00010.CrossRef Cummings MC, Winterford CM, Walker NL: Apoptosis. Am J Surg Pathol. 1997, 21: 88-101. 10.1097/00000478-199701000-00010.CrossRef
34.
go back to reference Gillardon F, Wickert H, Zimmermann M: Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett. 1995, 192: 85-88. 10.1016/0304-3940(95)11619-8.CrossRef Gillardon F, Wickert H, Zimmermann M: Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett. 1995, 192: 85-88. 10.1016/0304-3940(95)11619-8.CrossRef
35.
go back to reference Adams JM, Cory S: The bcl-2 protein family: arbiters of cell surival. Science. 1998, 281: 1322-1326. 10.1126/science.281.5381.1322.CrossRef Adams JM, Cory S: The bcl-2 protein family: arbiters of cell surival. Science. 1998, 281: 1322-1326. 10.1126/science.281.5381.1322.CrossRef
36.
go back to reference Rakesh K, Mahitosh M, Allan L, et al: Overexpression of HER2 Modulates Bcl-2, Bcl-XL, and Tamoxifen-induced Apoptosis in Human MCF-7 Breast Cancer Cells. Clin Cancer Res. 1996, 2: 1215-1219. Rakesh K, Mahitosh M, Allan L, et al: Overexpression of HER2 Modulates Bcl-2, Bcl-XL, and Tamoxifen-induced Apoptosis in Human MCF-7 Breast Cancer Cells. Clin Cancer Res. 1996, 2: 1215-1219.
37.
go back to reference Zheng L, Weiya X, BingLiang F, et al: Targeting HER-2/neu-overexpressing breast cancer cells by an antisense iron responsive element-directed gene expression. Cancer lett. 2001, 174: 151-158. 10.1016/S0304-3835(01)00700-5.CrossRef Zheng L, Weiya X, BingLiang F, et al: Targeting HER-2/neu-overexpressing breast cancer cells by an antisense iron responsive element-directed gene expression. Cancer lett. 2001, 174: 151-158. 10.1016/S0304-3835(01)00700-5.CrossRef
Metadata
Title
Anti-HER-2 engineering antibody ChA21 inhibits growth and induces apoptosis of SK-OV-3 cells
Authors
AnLi Zhang
Hua Xue
XiaoGuang Ling
Yi Gao
Feng Yang
LianSheng Cheng
Jing Liu
Qiang Wu
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2010
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-29-23

Other articles of this Issue 1/2010

Journal of Experimental & Clinical Cancer Research 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine