Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2008

Open Access 01-12-2008 | Research

Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population

Authors: Mayumi Kasahara, Kayo Osawa, Kana Yoshida, Aiko Miyaishi, Yasunori Osawa, Natsuko Inoue, Akimitsu Tsutou, Yoshiki Tabuchi, Kenichi Tanaka, Masahiro Yamamoto, Etsuji Shimada, Juro Takahashi

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2008

Login to get access

Abstract

Background

Genetic polymorphisms of DNA repair enzymes may lead to genetic instability and colorectal cancer carcinogenesis. Our objective was to measure the interactions between polymorphisms of repair genes and tobacco smoking in colorectal cancer.

Methods

The case-control study involved sixty-eight colorectal cancer patients and 121 non-cancer controls divided into non-smokers and smokers according to pack-years of smoking. The genetic polymorphisms of DNA repair enzymes,OGG1 Ser326Cys, MUTYH Gln324His, APEX1 Asp148Glu and XRCC1 Arg399Gln, were examined using PCR-RFLP.

Results

The MUTYH Gln324His showed strong significant associations with a risk of colorectal cancer (crude odds ratio [OR] 3.30, 95% confidence interval [95%CI] 1.44–7.60, p = 0.005; adjusted OR3.53, 95%CI 1.44–8.70, p = 0.006). The ORs for the APEX1 Asp148Glu were statistically significant (crude OR 2.69, 95%CI 1.45–4.99, p = 0.002; adjusted OR 2.33, 95%CI 1.21–4.48, p = 0.011). The ORs for the MUTYH Gln324His and the APEX1 Asp148Glu were statistically significant for colon cancer (adjusted OR 3.95, 95%CI 1.28–12.20, p = 0.017 for MUTYH Gln324His ; adjusted OR 3.04, 95%CI 1.38–6.71, p = 0.006 for APEX1 Asp148Glu). The joint effect of tobacco exposure and the MUTYH Gln324His showed a significant association with colorectal cancer risk in non-smokers (adjusted OR 4.08, 95%CI 1.22–13.58, p = 0.022) and the APEX1 Asp148Glu was significantly increased in smokers (adjusted OR 5.02, 95%CI 1.80–13.99, p = 0.002). However, the distributions of OGG1 Ser326Cys and XRCC1 Arg399Gln were not associated with a colorectal cancer risk.

Conclusion

Our findings suggest that the MUTYH Gln324His and the APEX1 Asp148Glu constitutes an increased risk of colorectal cancer, especially colon cancer. The MUTYH Gln324His is strongly associated with colorectal cancer susceptibility in never smoking history, whereas the APEX1 Asp148Glu genotype constitutes an increased risk of colorectal cancer when accompanied by smoking exposure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barrowman JA, Rahman A, Lindstrom MB, Borgstrom B: Intestinal absorption and metabolism of hydrocarbons. Prog Lipid Res. 1989, 28: 189-203. 10.1016/0163-7827(89)90012-X.CrossRef Barrowman JA, Rahman A, Lindstrom MB, Borgstrom B: Intestinal absorption and metabolism of hydrocarbons. Prog Lipid Res. 1989, 28: 189-203. 10.1016/0163-7827(89)90012-X.CrossRef
2.
go back to reference Alexandrov K, Rojas M, Kadlubar FF, Lang NP, Bartsch H: Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis. 1996, 17: 2081-2083. 10.1093/carcin/17.9.2081.CrossRef Alexandrov K, Rojas M, Kadlubar FF, Lang NP, Bartsch H: Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis. 1996, 17: 2081-2083. 10.1093/carcin/17.9.2081.CrossRef
3.
go back to reference Giovannucci E: An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2001, 10: 725-731. Giovannucci E: An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2001, 10: 725-731.
4.
go back to reference Yoshida K, Osawa K, Kasahara M, et al: Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking. Asian Pac J Cancer Prev. 2007, 8: 438-444. Yoshida K, Osawa K, Kasahara M, et al: Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking. Asian Pac J Cancer Prev. 2007, 8: 438-444.
5.
go back to reference Wood RD, Mitchell M, Sgouros J, Lindahl T: Human DNA repair genes. Science. 2001, 291: 1284-1289. 10.1126/science.1056154.CrossRef Wood RD, Mitchell M, Sgouros J, Lindahl T: Human DNA repair genes. Science. 2001, 291: 1284-1289. 10.1126/science.1056154.CrossRef
6.
go back to reference Boiteux S, Radicella JP: The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000, 377: 1-8. 10.1006/abbi.2000.1773.CrossRef Boiteux S, Radicella JP: The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000, 377: 1-8. 10.1006/abbi.2000.1773.CrossRef
7.
go back to reference Ohtsubo T, Nishioka K, Imaiso Y, et al: Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 2000, 28: 1355-1364. 10.1093/nar/28.6.1355.CrossRef Ohtsubo T, Nishioka K, Imaiso Y, et al: Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 2000, 28: 1355-1364. 10.1093/nar/28.6.1355.CrossRef
8.
go back to reference Kamiya H, Kasai H: Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem. 1995, 270: 19446-19450. 10.1074/jbc.270.33.19446.CrossRef Kamiya H, Kasai H: Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem. 1995, 270: 19446-19450. 10.1074/jbc.270.33.19446.CrossRef
9.
go back to reference Bennett RA, Wilson DM, Wong D, Demple B: Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci USA. 1997, 94: 7166-7169. 10.1073/pnas.94.14.7166.CrossRef Bennett RA, Wilson DM, Wong D, Demple B: Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci USA. 1997, 94: 7166-7169. 10.1073/pnas.94.14.7166.CrossRef
10.
go back to reference Caldecott KW, Aoufouchi S, Johnson P, Shall S: XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 1996, 24: 4387-4394. 10.1093/nar/24.22.4387.CrossRef Caldecott KW, Aoufouchi S, Johnson P, Shall S: XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 1996, 24: 4387-4394. 10.1093/nar/24.22.4387.CrossRef
11.
go back to reference Moreno V, Gemignani F, Landi S, et al: Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res. 2006, 12: 2101-2108. 10.1158/1078-0432.CCR-05-1363.CrossRef Moreno V, Gemignani F, Landi S, et al: Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res. 2006, 12: 2101-2108. 10.1158/1078-0432.CCR-05-1363.CrossRef
12.
go back to reference Berndt SI, Huang WY, Fallin MD, et al: Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res. 2007, 67: 1395-1404. 10.1158/0008-5472.CAN-06-1390.CrossRef Berndt SI, Huang WY, Fallin MD, et al: Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res. 2007, 67: 1395-1404. 10.1158/0008-5472.CAN-06-1390.CrossRef
13.
go back to reference Skjelbred CF, Saebø M, Wallin H, et al: Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer. 2006, 6: 67-10.1186/1471-2407-6-67.CrossRef Skjelbred CF, Saebø M, Wallin H, et al: Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer. 2006, 6: 67-10.1186/1471-2407-6-67.CrossRef
14.
go back to reference Al-Tassan N, Chmiel NH, Maynard J, et al: Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors. Nat Genet. 2002, 30: 227-232. 10.1038/ng828.CrossRef Al-Tassan N, Chmiel NH, Maynard J, et al: Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors. Nat Genet. 2002, 30: 227-232. 10.1038/ng828.CrossRef
15.
go back to reference Miyaki M, Iijima T, Yamaguchi T, et al: Germline mutations of the MYH gene in Japanese patients with multiple colorectal adenomas. Mutat Res. 2005, 578: 430-433.CrossRef Miyaki M, Iijima T, Yamaguchi T, et al: Germline mutations of the MYH gene in Japanese patients with multiple colorectal adenomas. Mutat Res. 2005, 578: 430-433.CrossRef
16.
go back to reference Kim IJ, Ku JL, Kang HC, et al: Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated with sporadic colorectal cancer patients. Hum Genet. 2004, 115: 498-503. 10.1007/s00439-004-1186-7.CrossRef Kim IJ, Ku JL, Kang HC, et al: Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated with sporadic colorectal cancer patients. Hum Genet. 2004, 115: 498-503. 10.1007/s00439-004-1186-7.CrossRef
17.
go back to reference Yanaru-Fujisawa R, Matsumoto T, Ushijima Y, et al: Genomic and functional analyses of MUTYH in Japanese patients with adenomatous polyposis. Clin Genet. 2008, 73: 545-553.CrossRef Yanaru-Fujisawa R, Matsumoto T, Ushijima Y, et al: Genomic and functional analyses of MUTYH in Japanese patients with adenomatous polyposis. Clin Genet. 2008, 73: 545-553.CrossRef
18.
go back to reference Tao H, Shinmura K, Suzuki M, et al: Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer Sci. 2008, 99: 355-360. 10.1111/j.1349-7006.2007.00694.x.CrossRef Tao H, Shinmura K, Suzuki M, et al: Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer Sci. 2008, 99: 355-360. 10.1111/j.1349-7006.2007.00694.x.CrossRef
19.
go back to reference Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW: XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2006, 15: 2384-2390. 10.1158/1055-9965.EPI-06-0381.CrossRef Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW: XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2006, 15: 2384-2390. 10.1158/1055-9965.EPI-06-0381.CrossRef
20.
go back to reference Stern MC, Conti DV, Siegmund KD, et al: DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev. 2007, 16: 2363-2372. 10.1158/1055-9965.EPI-07-0268.CrossRef Stern MC, Conti DV, Siegmund KD, et al: DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev. 2007, 16: 2363-2372. 10.1158/1055-9965.EPI-07-0268.CrossRef
21.
go back to reference Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR: Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002, 11: 409-412. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR: Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002, 11: 409-412.
22.
go back to reference Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD: Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis. 2001, 22: 917-922. 10.1093/carcin/22.6.917.CrossRef Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD: Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis. 2001, 22: 917-922. 10.1093/carcin/22.6.917.CrossRef
23.
go back to reference Duell EJ, Wiencke JK, Cheng TJ, et al: Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000, 21: 965-971. 10.1093/carcin/21.5.965.CrossRef Duell EJ, Wiencke JK, Cheng TJ, et al: Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000, 21: 965-971. 10.1093/carcin/21.5.965.CrossRef
24.
go back to reference Hansen R, Saebø M, Skjelbred CF, et al: GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. Cancer Lett. 2005, 229: 85-91. 10.1016/j.canlet.2005.04.019.CrossRef Hansen R, Saebø M, Skjelbred CF, et al: GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. Cancer Lett. 2005, 229: 85-91. 10.1016/j.canlet.2005.04.019.CrossRef
25.
go back to reference Kim JI, Park YJ, Kim KH, et al: hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gastroenterol. 2003, 9: 956-960.CrossRef Kim JI, Park YJ, Kim KH, et al: hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gastroenterol. 2003, 9: 956-960.CrossRef
26.
go back to reference Ali M, Kim H, Cleary S, Cupples C, Gallinger S, Bristow R: Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology. 2008, 135: 499-507. 10.1053/j.gastro.2008.04.035.CrossRef Ali M, Kim H, Cleary S, Cupples C, Gallinger S, Bristow R: Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology. 2008, 135: 499-507. 10.1053/j.gastro.2008.04.035.CrossRef
27.
go back to reference Toyokuni S, Mori T, Dizdaroglu M: DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer. 1994, 57: 123-128. 10.1002/ijc.2910570122.CrossRef Toyokuni S, Mori T, Dizdaroglu M: DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer. 1994, 57: 123-128. 10.1002/ijc.2910570122.CrossRef
28.
go back to reference Pardini B, Naccarati A, Novotny J, et al: DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res. 2008, 638: 146-153.CrossRef Pardini B, Naccarati A, Novotny J, et al: DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res. 2008, 638: 146-153.CrossRef
29.
go back to reference Ito H, Matsuo K, Hamajima N, et al: Gene-environment interactions between the smoking habit and polymorphisms in the DNA repair genes, APE1 Asp148Glu and XRCC1 Arg399Gln, in Japanese lung cancer risk. Carcinogenesis. 2004, 25: 1395-1401. 10.1093/carcin/bgh153.CrossRef Ito H, Matsuo K, Hamajima N, et al: Gene-environment interactions between the smoking habit and polymorphisms in the DNA repair genes, APE1 Asp148Glu and XRCC1 Arg399Gln, in Japanese lung cancer risk. Carcinogenesis. 2004, 25: 1395-1401. 10.1093/carcin/bgh153.CrossRef
30.
go back to reference Walker LJ, Robson CN, Black E, Gillespie D, Hickson ID: Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993, 13: 5370-5376.CrossRef Walker LJ, Robson CN, Black E, Gillespie D, Hickson ID: Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993, 13: 5370-5376.CrossRef
31.
go back to reference Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM: Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res. 2000, 28: 3871-3879. 10.1093/nar/28.20.3871.CrossRef Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM: Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res. 2000, 28: 3871-3879. 10.1093/nar/28.20.3871.CrossRef
Metadata
Title
Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population
Authors
Mayumi Kasahara
Kayo Osawa
Kana Yoshida
Aiko Miyaishi
Yasunori Osawa
Natsuko Inoue
Akimitsu Tsutou
Yoshiki Tabuchi
Kenichi Tanaka
Masahiro Yamamoto
Etsuji Shimada
Juro Takahashi
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2008
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-27-49

Other articles of this Issue 1/2008

Journal of Experimental & Clinical Cancer Research 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine