Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2012

Open Access 01-12-2012 | Research

HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas

Authors: Angela M Sosin, Angelika M Burger, Aisha Siddiqi, Judith Abrams, Ramzi M Mohammad, Ayad M Al-Katib

Published in: Journal of Hematology & Oncology | Issue 1/2012

Login to get access

Abstract

Background

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then, MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived B-lymphcytes for its potential clinical use.

Results

Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay, Annexin V/PI, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell death. Using a cell free autoubiquitination assay, neither agent interfered with HDM2 E3 ligase function. MI-219 was more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the autoubiquitination and degradation of HDM2.

Conclusions

Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2 through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to biological outcome. Our results provide evidence that different classes of HDM2 SMIs elicit molecular events that extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 2007, 57: 43-66. 10.3322/canjclin.57.1.43.CrossRefPubMed Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 2007, 57: 43-66. 10.3322/canjclin.57.1.43.CrossRefPubMed
2.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62: 10-29. 10.3322/caac.20138.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62: 10-29. 10.3322/caac.20138.CrossRefPubMed
3.
go back to reference Collavin L, Lunardi A, Del Sal G: p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010, 17: 901-911. 10.1038/cdd.2010.35.CrossRefPubMed Collavin L, Lunardi A, Del Sal G: p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010, 17: 901-911. 10.1038/cdd.2010.35.CrossRefPubMed
4.
go back to reference Prives C, Hall PA: The p53 pathway. J Pathol. 1999, 187: 112-126. 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3.CrossRefPubMed Prives C, Hall PA: The p53 pathway. J Pathol. 1999, 187: 112-126. 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3.CrossRefPubMed
5.
go back to reference Oren M: Regulation of the p53 tumor suppressor protein. J Biol Chem. 1999, 274: 36031-36034. 10.1074/jbc.274.51.36031.CrossRefPubMed Oren M: Regulation of the p53 tumor suppressor protein. J Biol Chem. 1999, 274: 36031-36034. 10.1074/jbc.274.51.36031.CrossRefPubMed
6.
go back to reference Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene. 2005, 24: 2899-2908. 10.1038/sj.onc.1208615.CrossRefPubMed Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene. 2005, 24: 2899-2908. 10.1038/sj.onc.1208615.CrossRefPubMed
7.
go back to reference Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science. 1991, 253: 49-53. 10.1126/science.1905840.CrossRefPubMed Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science. 1991, 253: 49-53. 10.1126/science.1905840.CrossRefPubMed
8.
go back to reference Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M, Kolitz J, Broome JD: Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood. 1997, 90: 4078-4091.PubMed Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M, Kolitz J, Broome JD: Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood. 1997, 90: 4078-4091.PubMed
9.
go back to reference Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP: Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001, 61: 6185-6193.PubMed Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP: Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001, 61: 6185-6193.PubMed
10.
go back to reference Buttitta F, Marchetti A, Gadducci A, Pellegrini S, Morganti M, Carnicelli V, Cosio S, Gagetti O, Genazzani AR, Bevilacqua G: p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer. 1997, 75: 230-235. 10.1038/bjc.1997.38.PubMedCentralCrossRefPubMed Buttitta F, Marchetti A, Gadducci A, Pellegrini S, Morganti M, Carnicelli V, Cosio S, Gagetti O, Genazzani AR, Bevilacqua G: p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer. 1997, 75: 230-235. 10.1038/bjc.1997.38.PubMedCentralCrossRefPubMed
11.
go back to reference Harada T, Ogura S, Yamazaki K, Kinoshita I, Itoh T, Isobe H, Yamashiro K, Dosaka-Akita H, Nishimura M: Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci. 2003, 94: 394-399. 10.1111/j.1349-7006.2003.tb01453.x.CrossRefPubMed Harada T, Ogura S, Yamazaki K, Kinoshita I, Itoh T, Isobe H, Yamashiro K, Dosaka-Akita H, Nishimura M: Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci. 2003, 94: 394-399. 10.1111/j.1349-7006.2003.tb01453.x.CrossRefPubMed
12.
go back to reference Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993, 362: 857-860. 10.1038/362857a0.CrossRefPubMed Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993, 362: 857-860. 10.1038/362857a0.CrossRefPubMed
13.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 1997, 387: 296-299. 10.1038/387296a0.CrossRefPubMed Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 1997, 387: 296-299. 10.1038/387296a0.CrossRefPubMed
14.
go back to reference Momand J, Wu HH, Dasgupta G: MDM2–master regulator of the p53 tumor suppressor protein. Gene. 2000, 242: 15-29. 10.1016/S0378-1119(99)00487-4.CrossRefPubMed Momand J, Wu HH, Dasgupta G: MDM2–master regulator of the p53 tumor suppressor protein. Gene. 2000, 242: 15-29. 10.1016/S0378-1119(99)00487-4.CrossRefPubMed
15.
go back to reference Iwakuma T, Lozano G: MDM2, an introduction. Mol Cancer Res. 2003, 1: 993-1000.PubMed Iwakuma T, Lozano G: MDM2, an introduction. Mol Cancer Res. 2003, 1: 993-1000.PubMed
16.
go back to reference Honda R, Yasuda H: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000, 19: 1473-1476. 10.1038/sj.onc.1203464.CrossRefPubMed Honda R, Yasuda H: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000, 19: 1473-1476. 10.1038/sj.onc.1203464.CrossRefPubMed
17.
go back to reference Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000, 275: 8945-8951. 10.1074/jbc.275.12.8945.CrossRefPubMed Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000, 275: 8945-8951. 10.1074/jbc.275.12.8945.CrossRefPubMed
18.
go back to reference Stommel JM, Wahl GM: A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle. 2005, 4: 411-417. 10.4161/cc.4.3.1522.CrossRefPubMed Stommel JM, Wahl GM: A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle. 2005, 4: 411-417. 10.4161/cc.4.3.1522.CrossRefPubMed
19.
go back to reference Stommel JM, Wahl GM: Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 2004, 23: 1547-1556. 10.1038/sj.emboj.7600145.PubMedCentralCrossRefPubMed Stommel JM, Wahl GM: Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 2004, 23: 1547-1556. 10.1038/sj.emboj.7600145.PubMedCentralCrossRefPubMed
20.
go back to reference Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H: The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood. 1994, 84: 3158-3165.PubMed Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H: The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood. 1994, 84: 3158-3165.PubMed
21.
go back to reference Chilosi M, Doglioni C, Menestrina F, Montagna L, Rigo A, Lestani M, Barbareschi M, Scarpa A, Mariuzzi GM, Pizzolo G: Abnormal expression of the p53-binding protein MDM2 in Hodgkin's disease. Blood. 1994, 84: 4295-4300.PubMed Chilosi M, Doglioni C, Menestrina F, Montagna L, Rigo A, Lestani M, Barbareschi M, Scarpa A, Mariuzzi GM, Pizzolo G: Abnormal expression of the p53-binding protein MDM2 in Hodgkin's disease. Blood. 1994, 84: 4295-4300.PubMed
22.
go back to reference Zhang Wang H: MDM2 oncogene as a novel target for human cancer therapy. Curr Pharm Des. 2000, 6: 393-416. 10.2174/1381612003400911.CrossRef Zhang Wang H: MDM2 oncogene as a novel target for human cancer therapy. Curr Pharm Des. 2000, 6: 393-416. 10.2174/1381612003400911.CrossRef
23.
go back to reference Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007, 28: 622-629. 10.1002/humu.20495.CrossRefPubMed Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007, 28: 622-629. 10.1002/humu.20495.CrossRefPubMed
24.
go back to reference Mitani N, Niwa Y, Okamoto Y: Surveyor nuclease-based detection of p53 gene mutations in haematological malignancy. Ann Clin Biochem. 2007, 44: 557-559. 10.1258/000456307782268174.CrossRefPubMed Mitani N, Niwa Y, Okamoto Y: Surveyor nuclease-based detection of p53 gene mutations in haematological malignancy. Ann Clin Biochem. 2007, 44: 557-559. 10.1258/000456307782268174.CrossRefPubMed
25.
go back to reference Kojima K, Burks JK, Arts J, Andreeff M: The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010, 9: 2545-2557. 10.1158/1535-7163.MCT-10-0337.PubMedCentralCrossRefPubMed Kojima K, Burks JK, Arts J, Andreeff M: The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010, 9: 2545-2557. 10.1158/1535-7163.MCT-10-0337.PubMedCentralCrossRefPubMed
26.
go back to reference Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A, Wu S, Yang D, Wang S, Al-Katib AM: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8: 115-10.1186/1476-4598-8-115.PubMedCentralCrossRefPubMed Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A, Wu S, Yang D, Wang S, Al-Katib AM: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8: 115-10.1186/1476-4598-8-115.PubMedCentralCrossRefPubMed
27.
go back to reference Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993, 7: 1126-1132. 10.1101/gad.7.7a.1126.CrossRefPubMed Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993, 7: 1126-1132. 10.1101/gad.7.7a.1126.CrossRefPubMed
28.
go back to reference Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675.CrossRefPubMed Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310. 10.1038/35042675.CrossRefPubMed
29.
go back to reference Chene P: Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003, 3: 102-109. 10.1038/nrc991.CrossRefPubMed Chene P: Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003, 3: 102-109. 10.1038/nrc991.CrossRefPubMed
30.
go back to reference Vousden KH, Lu X: Live or let die: the cell's response to p53. Nat Rev Cancer. 2002, 2: 594-604. 10.1038/nrc864.CrossRefPubMed Vousden KH, Lu X: Live or let die: the cell's response to p53. Nat Rev Cancer. 2002, 2: 594-604. 10.1038/nrc864.CrossRefPubMed
31.
go back to reference Shangary S, Wang S: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009, 49: 223-241. 10.1146/annurev.pharmtox.48.113006.094723.PubMedCentralCrossRefPubMed Shangary S, Wang S: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009, 49: 223-241. 10.1146/annurev.pharmtox.48.113006.094723.PubMedCentralCrossRefPubMed
32.
go back to reference Tabernero J, Dirix L, Schoffski P, Cervantes A, Lopez-Martin JA, Capdevila J, van Beijsterveldt L, Platero S, Hall B, Yuan Z: A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res. 2011, 17: 6313-6321. 10.1158/1078-0432.CCR-11-1101.CrossRefPubMed Tabernero J, Dirix L, Schoffski P, Cervantes A, Lopez-Martin JA, Capdevila J, van Beijsterveldt L, Platero S, Hall B, Yuan Z: A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res. 2011, 17: 6313-6321. 10.1158/1078-0432.CCR-11-1101.CrossRefPubMed
33.
go back to reference Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A. 2008, 105: 3933-3938. 10.1073/pnas.0708917105.PubMedCentralCrossRefPubMed Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A. 2008, 105: 3933-3938. 10.1073/pnas.0708917105.PubMedCentralCrossRefPubMed
34.
go back to reference Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM: Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther. 2008, 7: 2445-2454. 10.1158/1535-7163.MCT-08-0063.PubMedCentralCrossRefPubMed Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM: Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther. 2008, 7: 2445-2454. 10.1158/1535-7163.MCT-08-0063.PubMedCentralCrossRefPubMed
35.
go back to reference Dias SS, Hogan C, Ochocka AM, Meek DW: Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover. FEBS Lett. 2009, 583: 3543-3548. 10.1016/j.febslet.2009.09.057.CrossRefPubMed Dias SS, Hogan C, Ochocka AM, Meek DW: Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover. FEBS Lett. 2009, 583: 3543-3548. 10.1016/j.febslet.2009.09.057.CrossRefPubMed
36.
go back to reference Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ, Vousden KH: Phosphorylation of HDM2 by Akt. Oncogene. 2002, 21: 1955-1962. 10.1038/sj.onc.1205276.CrossRefPubMed Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ, Vousden KH: Phosphorylation of HDM2 by Akt. Oncogene. 2002, 21: 1955-1962. 10.1038/sj.onc.1205276.CrossRefPubMed
37.
go back to reference Azmi AS, Beck FW, Sarkar FH, Mohammad RM: Network perspectives on HDM2 inhibitor chemotherapy combinations. Curr Pharm Des. 2011, 17: 640-652. 10.2174/138161211795222612.CrossRefPubMed Azmi AS, Beck FW, Sarkar FH, Mohammad RM: Network perspectives on HDM2 inhibitor chemotherapy combinations. Curr Pharm Des. 2011, 17: 640-652. 10.2174/138161211795222612.CrossRefPubMed
38.
go back to reference Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1: 1001-1008.PubMed Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1: 1001-1008.PubMed
39.
go back to reference Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJ, Gabizon R, Mattia M, Zupnick A: The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol. 2010, 17: 982-989. 10.1038/nsmb.1872.PubMedCentralCrossRefPubMed Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJ, Gabizon R, Mattia M, Zupnick A: The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol. 2010, 17: 982-989. 10.1038/nsmb.1872.PubMedCentralCrossRefPubMed
40.
go back to reference Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM: Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets. 2010, 10: 319-331. 10.2174/156800910791190229.PubMedCentralCrossRefPubMed Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM: Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets. 2010, 10: 319-331. 10.2174/156800910791190229.PubMedCentralCrossRefPubMed
41.
go back to reference Bixby D, Kujawski L, Wang S, Malek SN: The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to MDM2 inhibitor-mediated apoptosis. Cell Cycle. 2008, 7: 971-979. 10.4161/cc.7.8.5754.CrossRefPubMed Bixby D, Kujawski L, Wang S, Malek SN: The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to MDM2 inhibitor-mediated apoptosis. Cell Cycle. 2008, 7: 971-979. 10.4161/cc.7.8.5754.CrossRefPubMed
42.
go back to reference Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E, Campas C, Barragan M, de Sevilla AF, Domingo A: MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood. 2006, 107: 4109-4114. 10.1182/blood-2005-08-3273.CrossRefPubMed Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E, Campas C, Barragan M, de Sevilla AF, Domingo A: MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood. 2006, 107: 4109-4114. 10.1182/blood-2005-08-3273.CrossRefPubMed
43.
go back to reference Stuhmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C, Theurich S, Cigliano L, Manz RA, Daniel PT: Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood. 2005, 106: 3609-3617. 10.1182/blood-2005-04-1489.CrossRefPubMed Stuhmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C, Theurich S, Cigliano L, Manz RA, Daniel PT: Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood. 2005, 106: 3609-3617. 10.1182/blood-2005-04-1489.CrossRefPubMed
44.
go back to reference Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M: MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005, 106: 3150-3159. 10.1182/blood-2005-02-0553.PubMedCentralCrossRefPubMed Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M: MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005, 106: 3150-3159. 10.1182/blood-2005-02-0553.PubMedCentralCrossRefPubMed
45.
go back to reference Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK, Pettitt AR: A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res. 2009, 69: 5210-5217. 10.1158/0008-5472.CAN-09-0627.CrossRefPubMed Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK, Pettitt AR: A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res. 2009, 69: 5210-5217. 10.1158/0008-5472.CAN-09-0627.CrossRefPubMed
46.
go back to reference Pekova S, Cmejla R, Smolej L, Kozak T, Spacek M, Prucha M: Identification of a novel, transactivation-defective splicing variant of p53 gene in patients with chronic lymphocytic leukemia. Leuk Res. 2008, 32: 395-400. 10.1016/j.leukres.2007.06.022.CrossRefPubMed Pekova S, Cmejla R, Smolej L, Kozak T, Spacek M, Prucha M: Identification of a novel, transactivation-defective splicing variant of p53 gene in patients with chronic lymphocytic leukemia. Leuk Res. 2008, 32: 395-400. 10.1016/j.leukres.2007.06.022.CrossRefPubMed
47.
go back to reference Zauli G, di Iasio MG, Secchiero P: Dal Bo M, Marconi D, Bomben R, Del Poeta G, Gattei V: Exposure of B cell chronic lymphocytic leukemia (B-CLL) cells to nutlin-3 induces a characteristic gene expression profile, which correlates with nutlin-3-mediated cytotoxicity. Curr Cancer Drug Targets. 2009, 9: 510-518. 10.2174/156800909788486777.CrossRefPubMed Zauli G, di Iasio MG, Secchiero P: Dal Bo M, Marconi D, Bomben R, Del Poeta G, Gattei V: Exposure of B cell chronic lymphocytic leukemia (B-CLL) cells to nutlin-3 induces a characteristic gene expression profile, which correlates with nutlin-3-mediated cytotoxicity. Curr Cancer Drug Targets. 2009, 9: 510-518. 10.2174/156800909788486777.CrossRefPubMed
48.
go back to reference Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H: Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem. 2006, 281: 24304-24313. 10.1074/jbc.M602596200.PubMedCentralCrossRefPubMed Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H: Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem. 2006, 281: 24304-24313. 10.1074/jbc.M602596200.PubMedCentralCrossRefPubMed
49.
go back to reference Lee MH, Lozano G: Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol. 2006, 16: 225-234. 10.1016/j.semcancer.2006.03.009.CrossRefPubMed Lee MH, Lozano G: Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol. 2006, 16: 225-234. 10.1016/j.semcancer.2006.03.009.CrossRefPubMed
50.
go back to reference Yan J, Zhang D, Di Y, Shi H, Rao H, Huo K: A newly identified Pirh2 substrate SCYL1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination. FEBS Lett. 2010, 584: 3275-3278. 10.1016/j.febslet.2010.06.027.PubMedCentralCrossRefPubMed Yan J, Zhang D, Di Y, Shi H, Rao H, Huo K: A newly identified Pirh2 substrate SCYL1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination. FEBS Lett. 2010, 584: 3275-3278. 10.1016/j.febslet.2010.06.027.PubMedCentralCrossRefPubMed
51.
go back to reference Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D: FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett. 2009, 583: 621-626. 10.1016/j.febslet.2009.01.009.CrossRefPubMed Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D: FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett. 2009, 583: 621-626. 10.1016/j.febslet.2009.01.009.CrossRefPubMed
52.
go back to reference Hu R, Peng G, Dai H, Breuer EK, Stemke-Hale K, Li K, Gonzalez-Angulo AM, Mills GB, Lin SY: ZNF668 functions as a tumor suppressor by regulating p53 stability and function in breast cancer. Cancer Res. 2011, 71: 6524-6534. 10.1158/0008-5472.CAN-11-0853.PubMedCentralCrossRefPubMed Hu R, Peng G, Dai H, Breuer EK, Stemke-Hale K, Li K, Gonzalez-Angulo AM, Mills GB, Lin SY: ZNF668 functions as a tumor suppressor by regulating p53 stability and function in breast cancer. Cancer Res. 2011, 71: 6524-6534. 10.1158/0008-5472.CAN-11-0853.PubMedCentralCrossRefPubMed
53.
go back to reference Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC, Wu Q: p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J. 2006, 25: 5703-5715. 10.1038/sj.emboj.7601435.PubMedCentralCrossRefPubMed Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC, Wu Q: p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J. 2006, 25: 5703-5715. 10.1038/sj.emboj.7601435.PubMedCentralCrossRefPubMed
54.
go back to reference Song MS, Song SJ, Kim SY, Oh HJ, Lim DS: The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008, 27: 1863-1874. 10.1038/emboj.2008.115.PubMedCentralCrossRefPubMed Song MS, Song SJ, Kim SY, Oh HJ, Lim DS: The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008, 27: 1863-1874. 10.1038/emboj.2008.115.PubMedCentralCrossRefPubMed
55.
go back to reference Gopal YN, Chanchorn E, Van Dyke MW: Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther. 2009, 8: 552-562. 10.1158/1535-7163.MCT-08-0661.CrossRefPubMed Gopal YN, Chanchorn E, Van Dyke MW: Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther. 2009, 8: 552-562. 10.1158/1535-7163.MCT-08-0661.CrossRefPubMed
56.
go back to reference Zhang X, Gu L, Li J, Shah N, He J, Yang L, Hu Q, Zhou M: Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res. 2010, 70: 9895-9904. 10.1158/0008-5472.CAN-10-1546.PubMedCentralCrossRefPubMed Zhang X, Gu L, Li J, Shah N, He J, Yang L, Hu Q, Zhou M: Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res. 2010, 70: 9895-9904. 10.1158/0008-5472.CAN-10-1546.PubMedCentralCrossRefPubMed
57.
go back to reference Mohammad RM, Mohamed AN, Smith MR: Jawadi NS, al-Katib A: A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet. 1993, 70: 62-67. 10.1016/0165-4608(93)90132-6.CrossRefPubMed Mohammad RM, Mohamed AN, Smith MR: Jawadi NS, al-Katib A: A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet. 1993, 70: 62-67. 10.1016/0165-4608(93)90132-6.CrossRefPubMed
58.
go back to reference Al-Katib AM, Smith MR, Kamanda WS, Pettit GR, Hamdan M, Mohamed AN, Chelladurai B, Mohammad RM: Bryostatin 1 down-regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts. Clin Cancer Res. 1998, 4: 1305-1314.PubMed Al-Katib AM, Smith MR, Kamanda WS, Pettit GR, Hamdan M, Mohamed AN, Chelladurai B, Mohammad RM: Bryostatin 1 down-regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts. Clin Cancer Res. 1998, 4: 1305-1314.PubMed
59.
go back to reference Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K: Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem. 2006, 49: 3432-3435. 10.1021/jm051122a.CrossRefPubMed Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K: Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem. 2006, 49: 3432-3435. 10.1021/jm051122a.CrossRefPubMed
60.
go back to reference Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y: Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc. 2005, 127: 10130-10131. 10.1021/ja051147z.CrossRefPubMed Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y: Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc. 2005, 127: 10130-10131. 10.1021/ja051147z.CrossRefPubMed
61.
go back to reference Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M, Erba H, Shedden K, Wang S, Malek SN: Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood. 2008, 111: 1584-1593.CrossRefPubMed Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M, Erba H, Shedden K, Wang S, Malek SN: Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood. 2008, 111: 1584-1593.CrossRefPubMed
62.
go back to reference Hainaut P, Hollstein M: p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000, 77: 81-137.CrossRefPubMed Hainaut P, Hollstein M: p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000, 77: 81-137.CrossRefPubMed
63.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
Metadata
Title
HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas
Authors
Angela M Sosin
Angelika M Burger
Aisha Siddiqi
Judith Abrams
Ramzi M Mohammad
Ayad M Al-Katib
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2012
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-5-57

Other articles of this Issue 1/2012

Journal of Hematology & Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine