Skip to main content
Top
Published in: Molecular Brain 1/2013

Open Access 01-12-2013 | Review

Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide

Authors: Tim VP Bliss, Graham L Collingridge

Published in: Molecular Brain | Issue 1/2013

Login to get access

Abstract

A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.
Appendix
Available only for authorised users
Literature
3.
go back to reference Lüscher C, Malenka RC: NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012, 4: DOI: 10.1101/cshperspect.a005710.. Lüscher C, Malenka RC: NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012, 4: DOI: 10.1101/cshperspect.a005710..
4.
go back to reference Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 361: 31-39.CrossRefPubMed Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 361: 31-39.CrossRefPubMed
5.
go back to reference Bliss T, Collingridge G, Morris R: Synaptic plasticity in the hippocampus. The Hippocampus Book. Edited by: Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J. New York: Oxford University Press, 343-474. Bliss T, Collingridge G, Morris R: Synaptic plasticity in the hippocampus. The Hippocampus Book. Edited by: Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J. New York: Oxford University Press, 343-474.
6.
go back to reference Dolphin AC, Errington ML, Bliss TV: Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature. 1982, 297: 496-498.CrossRefPubMed Dolphin AC, Errington ML, Bliss TV: Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature. 1982, 297: 496-498.CrossRefPubMed
7.
go back to reference Errington ML, Lynch MA, Bliss TV: Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(−)aminophosphonovalerate. Neuroscience. 1987, 20: 279-284.CrossRefPubMed Errington ML, Lynch MA, Bliss TV: Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(−)aminophosphonovalerate. Neuroscience. 1987, 20: 279-284.CrossRefPubMed
8.
go back to reference Aniksztejn L, Roisin MP, Amsellem R, Ben-Ari Y: Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience. 1989, 28: 387-392.CrossRefPubMed Aniksztejn L, Roisin MP, Amsellem R, Ben-Ari Y: Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience. 1989, 28: 387-392.CrossRefPubMed
9.
go back to reference Bliss TV, Errington ML, Laroche S, Lynch MA: Increase in K+−stimulated, Ca2+−dependent release of [3H] glutamate from rat dentate gyrus three days after induction of long-term potentiation. Neurosci Lett. 1987, 83: 107-112.CrossRefPubMed Bliss TV, Errington ML, Laroche S, Lynch MA: Increase in K+−stimulated, Ca2+−dependent release of [3H] glutamate from rat dentate gyrus three days after induction of long-term potentiation. Neurosci Lett. 1987, 83: 107-112.CrossRefPubMed
10.
go back to reference Errington ML, Galley PT, Bliss TVP: Long-term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in extracellular glutamate: real-time measurements using a novel dialysis electrode. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 675-687.PubMedCentralCrossRefPubMed Errington ML, Galley PT, Bliss TVP: Long-term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in extracellular glutamate: real-time measurements using a novel dialysis electrode. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 675-687.PubMedCentralCrossRefPubMed
11.
go back to reference McNaughton BL: Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol. 1982, 324: 249-262.PubMedCentralCrossRefPubMed McNaughton BL: Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol. 1982, 324: 249-262.PubMedCentralCrossRefPubMed
12.
go back to reference Palmer MJ, Isaac JTR, Collingridge GL: Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J Neurosci. 2004, 24: 4903-4911.CrossRefPubMed Palmer MJ, Isaac JTR, Collingridge GL: Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J Neurosci. 2004, 24: 4903-4911.CrossRefPubMed
13.
go back to reference Malgaroli A, Ting AE, Wendland B, Bergamaschi A, Villa A, Tsien RW, Scheller RH: Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science. 1995, 268: 1624-1628.CrossRefPubMed Malgaroli A, Ting AE, Wendland B, Bergamaschi A, Villa A, Tsien RW, Scheller RH: Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science. 1995, 268: 1624-1628.CrossRefPubMed
14.
go back to reference Betz WJ, Bewick GS: Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 1992, 255: 200-203.CrossRefPubMed Betz WJ, Bewick GS: Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 1992, 255: 200-203.CrossRefPubMed
15.
go back to reference Ryan TA, Ziv NE, Smith SJ: Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron. 1996, 17: 125-134.CrossRefPubMed Ryan TA, Ziv NE, Smith SJ: Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron. 1996, 17: 125-134.CrossRefPubMed
16.
go back to reference Zakharenko SS, Zablow L, Siegelbaum SA: Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci. 2001, 4: 711-717.CrossRefPubMed Zakharenko SS, Zablow L, Siegelbaum SA: Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci. 2001, 4: 711-717.CrossRefPubMed
17.
go back to reference Stanton PK, Winterer J, Zhang X-L, Müller W: Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci. 2005, 22: 2451-2461.CrossRefPubMed Stanton PK, Winterer J, Zhang X-L, Müller W: Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci. 2005, 22: 2451-2461.CrossRefPubMed
18.
go back to reference Ahmed MS, Siegelbaum SA: Recruitment of N-Type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron. 2009, 63: 372-385.PubMedCentralCrossRefPubMed Ahmed MS, Siegelbaum SA: Recruitment of N-Type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron. 2009, 63: 372-385.PubMedCentralCrossRefPubMed
19.
go back to reference Bayazitov IT, Richardson RJ, Fricke RG, Zakharenko SS: Slow presynaptic and fast postsynaptic components of compound long-term potentiation. J Neurosci. 2007, 27: 11510-11521.CrossRefPubMed Bayazitov IT, Richardson RJ, Fricke RG, Zakharenko SS: Slow presynaptic and fast postsynaptic components of compound long-term potentiation. J Neurosci. 2007, 27: 11510-11521.CrossRefPubMed
21.
go back to reference Stevens CF, Wang Y: Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994, 371: 704-707.CrossRefPubMed Stevens CF, Wang Y: Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994, 371: 704-707.CrossRefPubMed
22.
go back to reference Kullmann DM: Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron. 1994, 12: 1111-1120.CrossRefPubMed Kullmann DM: Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron. 1994, 12: 1111-1120.CrossRefPubMed
23.
go back to reference Kullmann DM, Erdemli G, Asztely F: LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996, 17: 461-474.CrossRefPubMed Kullmann DM, Erdemli G, Asztely F: LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996, 17: 461-474.CrossRefPubMed
24.
go back to reference Choi S, Klingauf J, Tsien RW: Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci. 2000, 3: 330-336.CrossRefPubMed Choi S, Klingauf J, Tsien RW: Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci. 2000, 3: 330-336.CrossRefPubMed
25.
go back to reference Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL: Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology. 2007, 52: 1-11.CrossRefPubMed Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL: Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology. 2007, 52: 1-11.CrossRefPubMed
26.
go back to reference Lauri SE, Vesikansa A, Segerstrale M, Collingridge GL, Isaac JTR, Taira T: Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. Neuron. 2006, 50: 415-429.CrossRefPubMed Lauri SE, Vesikansa A, Segerstrale M, Collingridge GL, Isaac JTR, Taira T: Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. Neuron. 2006, 50: 415-429.CrossRefPubMed
27.
go back to reference Alford S, Frenguelli BG, Schofield JG, Collingridge GL: Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol. 1993, 469: 693-716.PubMedCentralCrossRefPubMed Alford S, Frenguelli BG, Schofield JG, Collingridge GL: Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol. 1993, 469: 693-716.PubMedCentralCrossRefPubMed
28.
go back to reference Yuste R, Denk W: Dendritic spines as basic functional units of neuronal integration. Nature. 1995, 375: 682-684.CrossRefPubMed Yuste R, Denk W: Dendritic spines as basic functional units of neuronal integration. Nature. 1995, 375: 682-684.CrossRefPubMed
29.
go back to reference Emptage NJ, Reid CA, Fine A, Bliss TVP: Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron. 2003, 38: 797-804.CrossRefPubMed Emptage NJ, Reid CA, Fine A, Bliss TVP: Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron. 2003, 38: 797-804.CrossRefPubMed
30.
go back to reference Enoki R, Hu Y-L, Hamilton D, Fine A: Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron. 2009, 62: 242-253.CrossRefPubMed Enoki R, Hu Y-L, Hamilton D, Fine A: Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron. 2009, 62: 242-253.CrossRefPubMed
31.
go back to reference McGuinness L, Taylor C, Taylor RDT, Yau C, Langenhan T, Hart ML, Christian H, Tynan PW, Donnelly P, Emptage NJ: Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron. 2010, 68: 1109-1127.CrossRefPubMed McGuinness L, Taylor C, Taylor RDT, Yau C, Langenhan T, Hart ML, Christian H, Tynan PW, Donnelly P, Emptage NJ: Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron. 2010, 68: 1109-1127.CrossRefPubMed
32.
go back to reference Emptage N, Bliss TV, Fine A: Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron. 1999, 22: 115-124.CrossRefPubMed Emptage N, Bliss TV, Fine A: Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron. 1999, 22: 115-124.CrossRefPubMed
33.
go back to reference Sayer RJ, Friedlander MJ, Redman SJ: The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J Neurosci. 1990, 10: 826-836.PubMed Sayer RJ, Friedlander MJ, Redman SJ: The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J Neurosci. 1990, 10: 826-836.PubMed
35.
go back to reference Palmer LM, Stuart GJ: Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci. 2009, 29: 6897-6903.CrossRefPubMed Palmer LM, Stuart GJ: Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci. 2009, 29: 6897-6903.CrossRefPubMed
36.
go back to reference Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R: Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009, 458: 299-304.PubMedCentralCrossRefPubMed Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R: Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009, 458: 299-304.PubMedCentralCrossRefPubMed
37.
38.
go back to reference Kauer JA, Malenka RC, Nicoll RA: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1988, 1: 911-917.CrossRefPubMed Kauer JA, Malenka RC, Nicoll RA: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1988, 1: 911-917.CrossRefPubMed
39.
go back to reference Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL: Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature. 1991, 349: 156-158.CrossRefPubMed Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL: Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature. 1991, 349: 156-158.CrossRefPubMed
40.
go back to reference Clark KA, Collingridge GL: Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol. 1995, 482: 39-52.PubMedCentralCrossRefPubMed Clark KA, Collingridge GL: Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol. 1995, 482: 39-52.PubMedCentralCrossRefPubMed
41.
go back to reference Berretta N, Berton F, Bianchi R, Brunelli M, Capogna M, Francesconi W: Long-term Potentiation of NMDA Receptor-mediated EPSP in Guinea-pig Hippocampal Slices. Eur J Neurosci. 1991, 3: 850-854.CrossRefPubMed Berretta N, Berton F, Bianchi R, Brunelli M, Capogna M, Francesconi W: Long-term Potentiation of NMDA Receptor-mediated EPSP in Guinea-pig Hippocampal Slices. Eur J Neurosci. 1991, 3: 850-854.CrossRefPubMed
42.
go back to reference Muller D, Lynch G: Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc Natl Acad Sci USA. 1988, 85: 9346-9350.PubMedCentralCrossRefPubMed Muller D, Lynch G: Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc Natl Acad Sci USA. 1988, 85: 9346-9350.PubMedCentralCrossRefPubMed
43.
go back to reference Manabe T, Nicoll RA: Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science. 1994, 265: 1888-1892.CrossRefPubMed Manabe T, Nicoll RA: Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science. 1994, 265: 1888-1892.CrossRefPubMed
44.
go back to reference Mainen ZF, Jia Z, Roder J, Malinow R: Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci. 1998, 1: 579-586.CrossRefPubMed Mainen ZF, Jia Z, Roder J, Malinow R: Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci. 1998, 1: 579-586.CrossRefPubMed
45.
go back to reference Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J: Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron. 1996, 17: 945-956.CrossRefPubMed Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J: Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron. 1996, 17: 945-956.CrossRefPubMed
46.
go back to reference Diamond JS, Bergles DE, Jahr CE: Glutamate release monitored with astrocyte transporter currents during LTP. Neuron. 1998, 21: 425-433.CrossRefPubMed Diamond JS, Bergles DE, Jahr CE: Glutamate release monitored with astrocyte transporter currents during LTP. Neuron. 1998, 21: 425-433.CrossRefPubMed
47.
go back to reference Lüscher C, Malenka RC, Nicoll RA: Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998, 21: 435-441.CrossRefPubMed Lüscher C, Malenka RC, Nicoll RA: Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998, 21: 435-441.CrossRefPubMed
48.
go back to reference Kawamura Y, Manita S, Nakamura T, Inoue M, Kudo Y, Miyakawa H: Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. Eur J Neurosci. 2004, 19: 1591-1600.CrossRefPubMed Kawamura Y, Manita S, Nakamura T, Inoue M, Kudo Y, Miyakawa H: Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. Eur J Neurosci. 2004, 19: 1591-1600.CrossRefPubMed
49.
go back to reference Pita-Almenar JD, Collado MS, Colbert CM, Eskin A: Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J Neurosci. 2006, 26: 10461-10471.CrossRefPubMed Pita-Almenar JD, Collado MS, Colbert CM, Eskin A: Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J Neurosci. 2006, 26: 10461-10471.CrossRefPubMed
50.
go back to reference Kullmann DM, Nicoll RA: Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature. 1992, 357: 240-244.CrossRefPubMed Kullmann DM, Nicoll RA: Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature. 1992, 357: 240-244.CrossRefPubMed
51.
go back to reference Manabe T, Renner P, Nicoll RA: Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature. 1992, 355: 50-55.CrossRefPubMed Manabe T, Renner P, Nicoll RA: Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature. 1992, 355: 50-55.CrossRefPubMed
52.
go back to reference Oliet SH, Malenka RC, Nicoll RA: Bidirectional control of quantal size by synaptic activity in the hippocampus. Science. 1996, 271: 1294-1297.CrossRefPubMed Oliet SH, Malenka RC, Nicoll RA: Bidirectional control of quantal size by synaptic activity in the hippocampus. Science. 1996, 271: 1294-1297.CrossRefPubMed
53.
go back to reference Liao D, Hessler NA, Malinow R: Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995, 375: 400-404.CrossRefPubMed Liao D, Hessler NA, Malinow R: Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995, 375: 400-404.CrossRefPubMed
54.
go back to reference Isaac JT, Nicoll RA, Malenka RC: Evidence for silent synapses: implications for the expression of LTP. Neuron. 1995, 15: 427-434.CrossRefPubMed Isaac JT, Nicoll RA, Malenka RC: Evidence for silent synapses: implications for the expression of LTP. Neuron. 1995, 15: 427-434.CrossRefPubMed
55.
go back to reference Ward B, McGuinness L, Akerman CJ, Fine A, Bliss TVP, Emptage NJ: State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron. 2006, 52: 649-661.CrossRefPubMed Ward B, McGuinness L, Akerman CJ, Fine A, Bliss TVP, Emptage NJ: State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron. 2006, 52: 649-661.CrossRefPubMed
56.
go back to reference Durand GM, Kovalchuk Y, Konnerth A: Long-term potentiation and functional synapse induction in developing hippocampus. Nature. 1996, 381: 71-75.CrossRefPubMed Durand GM, Kovalchuk Y, Konnerth A: Long-term potentiation and functional synapse induction in developing hippocampus. Nature. 1996, 381: 71-75.CrossRefPubMed
57.
go back to reference Lynch GS, Gribkoff VK, Deadwyler SA: Long term potentiation is accompanied by a reduction in dendritic responsiveness to glutamic acid. Nature. 1976, 263: 151-153.CrossRefPubMed Lynch GS, Gribkoff VK, Deadwyler SA: Long term potentiation is accompanied by a reduction in dendritic responsiveness to glutamic acid. Nature. 1976, 263: 151-153.CrossRefPubMed
58.
go back to reference Davies SN, Lester RA, Reymann KG, Collingridge GL: Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature. 1989, 338: 500-503.CrossRefPubMed Davies SN, Lester RA, Reymann KG, Collingridge GL: Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature. 1989, 338: 500-503.CrossRefPubMed
59.
60.
go back to reference Frick A, Magee J, Johnston D: LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci. 2004, 7: 126-135.CrossRefPubMed Frick A, Magee J, Johnston D: LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci. 2004, 7: 126-135.CrossRefPubMed
61.
go back to reference Benke TA, Lüthi A, Isaac JT, Collingridge GL: Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998, 393: 793-797.CrossRefPubMed Benke TA, Lüthi A, Isaac JT, Collingridge GL: Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998, 393: 793-797.CrossRefPubMed
62.
go back to reference Jahr CE, Stevens CF: Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987, 325: 522-525.CrossRefPubMed Jahr CE, Stevens CF: Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987, 325: 522-525.CrossRefPubMed
63.
go back to reference Cull-Candy SG, Usowicz MM: Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature. 1987, 325: 525-528.CrossRefPubMed Cull-Candy SG, Usowicz MM: Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature. 1987, 325: 525-528.CrossRefPubMed
64.
go back to reference Soderling TR, Derkach VA: Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000, 23: 75-80.CrossRefPubMed Soderling TR, Derkach VA: Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000, 23: 75-80.CrossRefPubMed
65.
go back to reference Rosenmund C, Stern-Bach Y, Stevens CF: The tetrameric structure of a glutamate receptor channel. Science. 1998, 280: 1596-1599.CrossRefPubMed Rosenmund C, Stern-Bach Y, Stevens CF: The tetrameric structure of a glutamate receptor channel. Science. 1998, 280: 1596-1599.CrossRefPubMed
66.
go back to reference Derkach V, Barria A, Soderling TR: Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA. 1999, 96: 3269-3274.PubMedCentralCrossRefPubMed Derkach V, Barria A, Soderling TR: Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA. 1999, 96: 3269-3274.PubMedCentralCrossRefPubMed
67.
go back to reference Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, Huganir R, Traynelis SF: Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011, 14: 727-735.PubMedCentralCrossRefPubMed Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, Huganir R, Traynelis SF: Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011, 14: 727-735.PubMedCentralCrossRefPubMed
68.
go back to reference Richmond SA, Irving AJ, Molnar E, McIlhinney RA, Michelangeli F, Henley JM, Collingridge GL: Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience. 1996, 75: 69-82.CrossRefPubMed Richmond SA, Irving AJ, Molnar E, McIlhinney RA, Michelangeli F, Henley JM, Collingridge GL: Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience. 1996, 75: 69-82.CrossRefPubMed
69.
go back to reference Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT: Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001, 29: 243-254.CrossRefPubMed Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT: Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001, 29: 243-254.CrossRefPubMed
70.
go back to reference Pickard L, Noël J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, Molnar E: Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology. 2001, 41: 700-713.CrossRefPubMed Pickard L, Noël J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, Molnar E: Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology. 2001, 41: 700-713.CrossRefPubMed
71.
go back to reference Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D: CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010, 67: 239-252.CrossRefPubMed Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D: CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010, 67: 239-252.CrossRefPubMed
72.
go back to reference Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R: Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science. 1999, 284: 1811-1816.CrossRefPubMed Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R: Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science. 1999, 284: 1811-1816.CrossRefPubMed
73.
go back to reference Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R: Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 2000, 287: 2262-2267.CrossRefPubMed Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R: Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 2000, 287: 2262-2267.CrossRefPubMed
74.
go back to reference Ashby MC, La Rue De SA, Ralph GS, Uney J, Collingridge GL, Henley JM: Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci. 2004, 24: 5172-5176.PubMedCentralCrossRefPubMed Ashby MC, La Rue De SA, Ralph GS, Uney J, Collingridge GL, Henley JM: Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci. 2004, 24: 5172-5176.PubMedCentralCrossRefPubMed
75.
76.
go back to reference Patterson MA, Szatmari EM, Yasuda R: AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci USA. 2010, 107: 15951-15956.PubMedCentralCrossRefPubMed Patterson MA, Szatmari EM, Yasuda R: AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci USA. 2010, 107: 15951-15956.PubMedCentralCrossRefPubMed
77.
go back to reference Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E: Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 2000, 20: 7922-7931.PubMed Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E: Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 2000, 20: 7922-7931.PubMed
78.
go back to reference Liu SQ, Cull-Candy SG: Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature. 2000, 405: 454-458.CrossRefPubMed Liu SQ, Cull-Candy SG: Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature. 2000, 405: 454-458.CrossRefPubMed
79.
go back to reference Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JTR: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006, 9: 602-604.CrossRefPubMed Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JTR: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006, 9: 602-604.CrossRefPubMed
80.
go back to reference Appleby VJ, Corrêa SAL, Duckworth JK, Nash JE, Noël J, Fitzjohn SM, Collingridge GL, Molnar E: LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem. 2011, 116: 530-543.CrossRefPubMed Appleby VJ, Corrêa SAL, Duckworth JK, Nash JE, Noël J, Fitzjohn SM, Collingridge GL, Molnar E: LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem. 2011, 116: 530-543.CrossRefPubMed
81.
go back to reference Adesnik H, Nicoll RA: Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci. 2007, 27: 4598-4602.CrossRefPubMed Adesnik H, Nicoll RA: Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci. 2007, 27: 4598-4602.CrossRefPubMed
82.
go back to reference Nishimune A, Isaac JT, Molnar E, Noël J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM: NSF binding to GluR2 regulates synaptic transmission. Neuron. 1998, 21: 87-97.CrossRefPubMed Nishimune A, Isaac JT, Molnar E, Noël J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM: NSF binding to GluR2 regulates synaptic transmission. Neuron. 1998, 21: 87-97.CrossRefPubMed
83.
go back to reference Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC: PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci. 2008, 28: 7820-7827.PubMedCentralCrossRefPubMed Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC: PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci. 2008, 28: 7820-7827.PubMedCentralCrossRefPubMed
84.
go back to reference Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K: PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci. 2010, 13: 630-634.CrossRefPubMed Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K: PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci. 2010, 13: 630-634.CrossRefPubMed
85.
go back to reference Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC: Storage of spatial information by the maintenance mechanism of LTP. Science. 2006, 313: 1141-1144.CrossRefPubMed Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC: Storage of spatial information by the maintenance mechanism of LTP. Science. 2006, 313: 1141-1144.CrossRefPubMed
86.
go back to reference Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA: LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature. 2012, 10.1038/nature11775. Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA: LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature. 2012, 10.1038/nature11775.
87.
go back to reference Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL: PKM-Ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature. 2012, 493: 420-423.CrossRef Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL: PKM-Ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature. 2012, 493: 420-423.CrossRef
88.
go back to reference Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO: Prkcz null mice show normal learning and memory. Nature. 2012, 493: 416-419.CrossRef Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO: Prkcz null mice show normal learning and memory. Nature. 2012, 493: 416-419.CrossRef
89.
go back to reference Harris KM, Fiala JC, Ostroff L: Structural changes at dendritic spine synapses during long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 745-748.PubMedCentralCrossRefPubMed Harris KM, Fiala JC, Ostroff L: Structural changes at dendritic spine synapses during long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 745-748.PubMedCentralCrossRefPubMed
90.
go back to reference Tanaka J-I, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H: Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008, 319: 1683-1687.PubMedCentralCrossRefPubMed Tanaka J-I, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H: Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008, 319: 1683-1687.PubMedCentralCrossRefPubMed
91.
go back to reference Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999, 399: 66-70.CrossRefPubMed Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999, 399: 66-70.CrossRefPubMed
92.
go back to reference Volianskis A, Jensen M: Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J Physiol London. 2003, 550: 459-492.PubMedCentralCrossRefPubMed Volianskis A, Jensen M: Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J Physiol London. 2003, 550: 459-492.PubMedCentralCrossRefPubMed
93.
go back to reference Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, Jensen MS, Jane DE, Collingridge GL: Different NMDAR subtypes mediate induction of LTP and two forms of STP at CA1 synapses in the rat hippocampus in vitro. J Physiol London. 2013, in press Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, Jensen MS, Jane DE, Collingridge GL: Different NMDAR subtypes mediate induction of LTP and two forms of STP at CA1 synapses in the rat hippocampus in vitro. J Physiol London. 2013, in press
94.
go back to reference Rumpel S, LeDoux J, Zador A, Malinow R: Postsynaptic receptor trafficking underlying a form of associative learning. Science. 2005, 308: 83-88.CrossRefPubMed Rumpel S, LeDoux J, Zador A, Malinow R: Postsynaptic receptor trafficking underlying a form of associative learning. Science. 2005, 308: 83-88.CrossRefPubMed
Metadata
Title
Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide
Authors
Tim VP Bliss
Graham L Collingridge
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2013
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-6-5

Other articles of this Issue 1/2013

Molecular Brain 1/2013 Go to the issue