Skip to main content
Top
Published in: Molecular Brain 1/2013

Open Access 01-12-2013 | Research

Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs

Authors: Guanjun Zhang, Zilong Gao, Sudong Guan, Yan Zhu, Jin-Hui Wang

Published in: Molecular Brain | Issue 1/2013

Login to get access

Abstract

Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cruikshank SJ, Weinberger NM: Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review. Brain Res Brain Res Rev. 1996, 22: 191-228.CrossRefPubMed Cruikshank SJ, Weinberger NM: Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review. Brain Res Brain Res Rev. 1996, 22: 191-228.CrossRefPubMed
2.
go back to reference Dulcis D, Spitzer NC: Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol. 2011, 72: 465-474.CrossRef Dulcis D, Spitzer NC: Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol. 2011, 72: 465-474.CrossRef
3.
go back to reference Fox K: Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 369-381. 10.1098/rstb.2008.0252.PubMedCentralCrossRefPubMed Fox K: Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 369-381. 10.1098/rstb.2008.0252.PubMedCentralCrossRefPubMed
4.
go back to reference Katz LC, Shatz CJ: Synaptic activity and the construction of cortical circuits. Science. 1996, 274: 1133-1138. 10.1126/science.274.5290.1133.CrossRefPubMed Katz LC, Shatz CJ: Synaptic activity and the construction of cortical circuits. Science. 1996, 274: 1133-1138. 10.1126/science.274.5290.1133.CrossRefPubMed
5.
go back to reference Kerr AL, Cheng SY, Jones TA: Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. 2011, 44: 538-548.PubMedCentralPubMed Kerr AL, Cheng SY, Jones TA: Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. 2011, 44: 538-548.PubMedCentralPubMed
6.
go back to reference Kleim JA, Jones TA: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008, 51: S225-S239. 10.1044/1092-4388(2008/018).CrossRefPubMed Kleim JA, Jones TA: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008, 51: S225-S239. 10.1044/1092-4388(2008/018).CrossRefPubMed
7.
go back to reference Leslie JH, Nedivi E: Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol. 2011, 94: 223-237. 10.1016/j.pneurobio.2011.05.002.PubMedCentralCrossRefPubMed Leslie JH, Nedivi E: Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol. 2011, 94: 223-237. 10.1016/j.pneurobio.2011.05.002.PubMedCentralCrossRefPubMed
8.
go back to reference Singer W: Development and plasticity of cortical processing architectures. Science. 1995, 270: 758-764. 10.1126/science.270.5237.758.CrossRefPubMed Singer W: Development and plasticity of cortical processing architectures. Science. 1995, 270: 758-764. 10.1126/science.270.5237.758.CrossRefPubMed
9.
go back to reference Rogers LJ: The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brain. Mol Neurobiol. 1993, 7: 161-187. 10.1007/BF02769174.CrossRefPubMed Rogers LJ: The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brain. Mol Neurobiol. 1993, 7: 161-187. 10.1007/BF02769174.CrossRefPubMed
10.
go back to reference Foscarin S, Rossi F, Carulli D: Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res. 2012, 349: 161-167. 10.1007/s00441-011-1293-4.CrossRefPubMed Foscarin S, Rossi F, Carulli D: Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res. 2012, 349: 161-167. 10.1007/s00441-011-1293-4.CrossRefPubMed
11.
go back to reference Glasper ER, Schoenfeld TJ, Gould E: Adult neurogenesis: optimizing hippocampal function to suit the environment. Behav Brain Res. 2011, 227: 380-383.CrossRefPubMed Glasper ER, Schoenfeld TJ, Gould E: Adult neurogenesis: optimizing hippocampal function to suit the environment. Behav Brain Res. 2011, 227: 380-383.CrossRefPubMed
12.
go back to reference Karmarkar UR, Dan Y: Experience-dependent plasticity in adult visual cortex. Neuron. 2006, 52: 577-585. 10.1016/j.neuron.2006.11.001.CrossRefPubMed Karmarkar UR, Dan Y: Experience-dependent plasticity in adult visual cortex. Neuron. 2006, 52: 577-585. 10.1016/j.neuron.2006.11.001.CrossRefPubMed
13.
go back to reference O'Leary DD, Ruff NL, Dyck RH: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol. 1994, 4: 535-544. 10.1016/0959-4388(94)90054-X.CrossRefPubMed O'Leary DD, Ruff NL, Dyck RH: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol. 1994, 4: 535-544. 10.1016/0959-4388(94)90054-X.CrossRefPubMed
14.
15.
go back to reference Vida MD, Vingilis-Jaremko L, Butler BE, Gibson LC, Monteiro S: The reorganized brain: how treatment strategies for stroke and amblyopia can inform our knowledge of plasticity throughout the lifespan. Dev Psychobiol. 2012, 54: 357-368. 10.1002/dev.20625.CrossRefPubMed Vida MD, Vingilis-Jaremko L, Butler BE, Gibson LC, Monteiro S: The reorganized brain: how treatment strategies for stroke and amblyopia can inform our knowledge of plasticity throughout the lifespan. Dev Psychobiol. 2012, 54: 357-368. 10.1002/dev.20625.CrossRefPubMed
16.
go back to reference Byrne JH: Cellular analysis of associative learning. Physiol Rev. 1987, 67: 329-439.PubMed Byrne JH: Cellular analysis of associative learning. Physiol Rev. 1987, 67: 329-439.PubMed
17.
go back to reference Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M: Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain. 2012, 5: 6-10.1186/1756-6606-5-6.PubMedCentralCrossRefPubMed Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M: Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain. 2012, 5: 6-10.1186/1756-6606-5-6.PubMedCentralCrossRefPubMed
19.
go back to reference Lansner A: Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 2009, 32: 178-186. 10.1016/j.tins.2008.12.002.CrossRefPubMed Lansner A: Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 2009, 32: 178-186. 10.1016/j.tins.2008.12.002.CrossRefPubMed
20.
go back to reference Mayes A, Montaldi D, Migo E: Associative memory and the medial temporal lobes. Trends Cogn Sci. 2007, 11: 126-135. 10.1016/j.tics.2006.12.003.CrossRefPubMed Mayes A, Montaldi D, Migo E: Associative memory and the medial temporal lobes. Trends Cogn Sci. 2007, 11: 126-135. 10.1016/j.tics.2006.12.003.CrossRefPubMed
21.
23.
go back to reference Pulvirenti L: Neural plasticity and memory: towards an integrated view. Funct Neurol. 1992, 7: 481-490.PubMed Pulvirenti L: Neural plasticity and memory: towards an integrated view. Funct Neurol. 1992, 7: 481-490.PubMed
24.
go back to reference Holtmaat A, Svoboda K: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009, 10: 647-658. 10.1038/nrn2699.CrossRefPubMed Holtmaat A, Svoboda K: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009, 10: 647-658. 10.1038/nrn2699.CrossRefPubMed
25.
go back to reference Finnerty GT, Roberts LS, Connors BW: Sensory experience modifies the short-term dynamics of neocortical synapses. Nature. 1999, 400: 367-371. 10.1038/22553.CrossRefPubMed Finnerty GT, Roberts LS, Connors BW: Sensory experience modifies the short-term dynamics of neocortical synapses. Nature. 1999, 400: 367-371. 10.1038/22553.CrossRefPubMed
26.
go back to reference Hardingham N, Wright N, Dachtler J, Fox K: Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII. Neuron. 2008, 60: 861-874. 10.1016/j.neuron.2008.10.018.CrossRefPubMed Hardingham N, Wright N, Dachtler J, Fox K: Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII. Neuron. 2008, 60: 861-874. 10.1016/j.neuron.2008.10.018.CrossRefPubMed
27.
go back to reference Clem RL, Barth A: Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron. 2006, 49: 663-670. 10.1016/j.neuron.2006.01.019.CrossRefPubMed Clem RL, Barth A: Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron. 2006, 49: 663-670. 10.1016/j.neuron.2006.01.019.CrossRefPubMed
28.
go back to reference Jiao Y, Zhang C, Yanagawa Y, Sun QQ: Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci. 2006, 26: 8691-8701. 10.1523/JNEUROSCI.2478-06.2006.CrossRefPubMed Jiao Y, Zhang C, Yanagawa Y, Sun QQ: Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci. 2006, 26: 8691-8701. 10.1523/JNEUROSCI.2478-06.2006.CrossRefPubMed
29.
go back to reference Sun QQ, Zhang Z: Whisker experience modulates long-term depression in neocortical gamma-aminobutyric acidergic interneurons in barrel cortex. J Neurosci Res. 2011, 89: 73-85. 10.1002/jnr.22530.CrossRefPubMed Sun QQ, Zhang Z: Whisker experience modulates long-term depression in neocortical gamma-aminobutyric acidergic interneurons in barrel cortex. J Neurosci Res. 2011, 89: 73-85. 10.1002/jnr.22530.CrossRefPubMed
30.
go back to reference Wen JA, Barth AL: Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons. J Neurosci. 2011, 31: 4456-4465. 10.1523/JNEUROSCI.6042-10.2011.PubMedCentralCrossRefPubMed Wen JA, Barth AL: Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons. J Neurosci. 2011, 31: 4456-4465. 10.1523/JNEUROSCI.6042-10.2011.PubMedCentralCrossRefPubMed
31.
go back to reference Lendvai B, Stern EA, Chen B, Svoboda K: Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000, 404: 876-881. 10.1038/35009107.CrossRefPubMed Lendvai B, Stern EA, Chen B, Svoboda K: Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000, 404: 876-881. 10.1038/35009107.CrossRefPubMed
32.
go back to reference Rema V, Armstrong-James M, Ebner FF: Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life. J Neurosci. 2003, 23: 358-366.PubMed Rema V, Armstrong-James M, Ebner FF: Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life. J Neurosci. 2003, 23: 358-366.PubMed
33.
go back to reference Holtmaat A, De Paola V, Wilbrecht L, Knott GW: Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res. 2008, 192: 20-25. 10.1016/j.bbr.2008.04.005.CrossRefPubMed Holtmaat A, De Paola V, Wilbrecht L, Knott GW: Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res. 2008, 192: 20-25. 10.1016/j.bbr.2008.04.005.CrossRefPubMed
34.
go back to reference Vees AM, Micheva KD, Beaulieu C, Descarries L: Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J Comp Neurol. 1998, 400: 110-124. 10.1002/(SICI)1096-9861(19981012)400:1<110::AID-CNE8>3.0.CO;2-C.CrossRefPubMed Vees AM, Micheva KD, Beaulieu C, Descarries L: Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J Comp Neurol. 1998, 400: 110-124. 10.1002/(SICI)1096-9861(19981012)400:1<110::AID-CNE8>3.0.CO;2-C.CrossRefPubMed
35.
go back to reference Brown CE, Dyck RH: Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience. 2003, 119: 795-801. 10.1016/S0306-4522(03)00292-6.CrossRefPubMed Brown CE, Dyck RH: Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience. 2003, 119: 795-801. 10.1016/S0306-4522(03)00292-6.CrossRefPubMed
36.
go back to reference Land PW, Shamalla-Hannah L: Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal development. J Comp Neurol. 2002, 447: 43-56. 10.1002/cne.10229.CrossRefPubMed Land PW, Shamalla-Hannah L: Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal development. J Comp Neurol. 2002, 447: 43-56. 10.1002/cne.10229.CrossRefPubMed
37.
go back to reference Sachdev RN, Egli M, Stonecypher M, Wiley RG, Ebner FF: Enhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult rats. J Neurophysiol. 2000, 84: 1971-1981.PubMed Sachdev RN, Egli M, Stonecypher M, Wiley RG, Ebner FF: Enhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult rats. J Neurophysiol. 2000, 84: 1971-1981.PubMed
38.
go back to reference Wallace H, Glazewski S, Liming K, Fox K: The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci. 2001, 21: 3881-3894.PubMed Wallace H, Glazewski S, Liming K, Fox K: The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci. 2001, 21: 3881-3894.PubMed
39.
go back to reference Bavelier D, Neville HJ: Cross-modal plasticity: where and how?. Nat Rev Neurosci. 2002, 3: 443-452.PubMed Bavelier D, Neville HJ: Cross-modal plasticity: where and how?. Nat Rev Neurosci. 2002, 3: 443-452.PubMed
40.
go back to reference Lomber SG, Meredith MA, Kral A: Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci. 2010, 13: 1421-1427. 10.1038/nn.2653.CrossRefPubMed Lomber SG, Meredith MA, Kral A: Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci. 2010, 13: 1421-1427. 10.1038/nn.2653.CrossRefPubMed
41.
go back to reference Ni H, et al: Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS One. 2010, 5: e13736-10.1371/journal.pone.0013736.PubMedCentralCrossRefPubMed Ni H, et al: Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS One. 2010, 5: e13736-10.1371/journal.pone.0013736.PubMedCentralCrossRefPubMed
42.
go back to reference Ye B, Huang L, Gao Z, Chen P, Ni H, Guan S, Zhu Y, Wang JH: The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs. PLoS One. 2012, 7: e41986-10.1371/journal.pone.0041986.PubMedCentralCrossRefPubMed Ye B, Huang L, Gao Z, Chen P, Ni H, Guan S, Zhu Y, Wang JH: The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs. PLoS One. 2012, 7: e41986-10.1371/journal.pone.0041986.PubMedCentralCrossRefPubMed
43.
go back to reference Chen N, Chen X, Wang J-H: Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. Journal of Cell Science. 2008, 121: 2961-2971. 10.1242/jcs.022368.CrossRefPubMed Chen N, Chen X, Wang J-H: Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. Journal of Cell Science. 2008, 121: 2961-2971. 10.1242/jcs.022368.CrossRefPubMed
44.
go back to reference Ge R, Chen N, Wang JH: Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun. 2009, 387: 585-589. 10.1016/j.bbrc.2009.07.066.CrossRefPubMed Ge R, Chen N, Wang JH: Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun. 2009, 387: 585-589. 10.1016/j.bbrc.2009.07.066.CrossRefPubMed
45.
go back to reference Turrigiano GG, Nelson S: Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004, 5: 97-107. 10.1038/nrn1327.CrossRefPubMed Turrigiano GG, Nelson S: Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004, 5: 97-107. 10.1038/nrn1327.CrossRefPubMed
46.
go back to reference Burrone J, Murthy V: Synaptic gain control and homeostasis. Curr Opin Neurobiol. 2003, 13: 560-567. 10.1016/j.conb.2003.09.007.CrossRefPubMed Burrone J, Murthy V: Synaptic gain control and homeostasis. Curr Opin Neurobiol. 2003, 13: 560-567. 10.1016/j.conb.2003.09.007.CrossRefPubMed
47.
go back to reference Desai NS, Rutherford L, Turrigiano GG: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci. 1999, 2: 515-520. 10.1038/9165.CrossRefPubMed Desai NS, Rutherford L, Turrigiano GG: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci. 1999, 2: 515-520. 10.1038/9165.CrossRefPubMed
48.
go back to reference Ramakers GJ, Corner MA, Habers AM: Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of associated cerebral cortex. Exp Brain Res. 1990, 79: 157-166.CrossRefPubMed Ramakers GJ, Corner MA, Habers AM: Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of associated cerebral cortex. Exp Brain Res. 1990, 79: 157-166.CrossRefPubMed
49.
go back to reference Van Den Pol AN, Obrietan K, Belousov A: Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience. 1996, 74: 653-674. 10.1016/0306-4522(96)00153-4.CrossRefPubMed Van Den Pol AN, Obrietan K, Belousov A: Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience. 1996, 74: 653-674. 10.1016/0306-4522(96)00153-4.CrossRefPubMed
50.
go back to reference Burrone J, O'Byrne M, Murthy VN: Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature. 2002, 420: 414-418. 10.1038/nature01242.CrossRefPubMed Burrone J, O'Byrne M, Murthy VN: Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature. 2002, 420: 414-418. 10.1038/nature01242.CrossRefPubMed
51.
go back to reference Desai NS, Rutherford LC, Turrigiano GG: BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem. 1999, 6: 284-291.PubMedCentralPubMed Desai NS, Rutherford LC, Turrigiano GG: BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem. 1999, 6: 284-291.PubMedCentralPubMed
52.
go back to reference Demarque M, Spitzer NC: Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol. 2011, 72: 22-32.CrossRef Demarque M, Spitzer NC: Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol. 2011, 72: 22-32.CrossRef
53.
go back to reference Ehlers MD: Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003, 6: 231-242. 10.1038/nn1013.CrossRefPubMed Ehlers MD: Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003, 6: 231-242. 10.1038/nn1013.CrossRefPubMed
54.
go back to reference Perez-Otano I, Ehlers MD: Homeostatic plasticity and NMDA receptor trafficking. Trends Neuroscie. 2005, 28: 229-238. 10.1016/j.tins.2005.03.004.CrossRef Perez-Otano I, Ehlers MD: Homeostatic plasticity and NMDA receptor trafficking. Trends Neuroscie. 2005, 28: 229-238. 10.1016/j.tins.2005.03.004.CrossRef
55.
go back to reference Spitzer NC, Borodinsky LN, Root CM: Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium. 2005, 37: 417-423. 10.1016/j.ceca.2005.01.021.CrossRefPubMed Spitzer NC, Borodinsky LN, Root CM: Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium. 2005, 37: 417-423. 10.1016/j.ceca.2005.01.021.CrossRefPubMed
56.
go back to reference Thiagarajan TC, Piedras-Renteria ES, Tsien RW: Alpha- and beta-CaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002, 36: 1103-1114. 10.1016/S0896-6273(02)01049-8.CrossRefPubMed Thiagarajan TC, Piedras-Renteria ES, Tsien RW: Alpha- and beta-CaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002, 36: 1103-1114. 10.1016/S0896-6273(02)01049-8.CrossRefPubMed
57.
go back to reference Wang J-H, Kelly PT: Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol. 2001, 533: 407-422. 10.1111/j.1469-7793.2001.0407a.x.PubMedCentralCrossRefPubMed Wang J-H, Kelly PT: Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol. 2001, 533: 407-422. 10.1111/j.1469-7793.2001.0407a.x.PubMedCentralCrossRefPubMed
58.
go back to reference Yu J, Qian H, Chen N, Wang JH: Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011, 6: e25219-10.1371/journal.pone.0025219.PubMedCentralCrossRefPubMed Yu J, Qian H, Chen N, Wang JH: Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011, 6: e25219-10.1371/journal.pone.0025219.PubMedCentralCrossRefPubMed
59.
go back to reference Yu J, Qian H, Wang JH: Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012, 5: 26-10.1186/1756-6606-5-26.PubMedCentralCrossRefPubMed Yu J, Qian H, Wang JH: Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012, 5: 26-10.1186/1756-6606-5-26.PubMedCentralCrossRefPubMed
60.
go back to reference Zhang F, Liu B, Lei Z, Wang J: mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012, 5: 20-10.1186/1756-6606-5-20.PubMedCentralCrossRefPubMed Zhang F, Liu B, Lei Z, Wang J: mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012, 5: 20-10.1186/1756-6606-5-20.PubMedCentralCrossRefPubMed
63.
go back to reference Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J: The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008, 121: 2951-2960. 10.1242/jcs.025684.CrossRefPubMed Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J: The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008, 121: 2951-2960. 10.1242/jcs.025684.CrossRefPubMed
64.
go back to reference Wang Q, Liu X, Ge R, Guan S, Zhu Y, Wang JH: The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons. Biochem Biophys Res Commun. 2009, 378: 706-710. 10.1016/j.bbrc.2008.11.104.CrossRefPubMed Wang Q, Liu X, Ge R, Guan S, Zhu Y, Wang JH: The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons. Biochem Biophys Res Commun. 2009, 378: 706-710. 10.1016/j.bbrc.2008.11.104.CrossRefPubMed
65.
go back to reference Ge R, Qian H, Wang JH: Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain. 2011, 4: 19-10.1186/1756-6606-4-19.PubMedCentralCrossRefPubMed Ge R, Qian H, Wang JH: Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain. 2011, 4: 19-10.1186/1756-6606-4-19.PubMedCentralCrossRefPubMed
66.
go back to reference Wei J, Zhang M, Zhu Y, Wang JH: Ca2+−calmodulin signalling pathway upregulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience. 2004, 127: 637-647. 10.1016/j.neuroscience.2004.05.056.CrossRefPubMed Wei J, Zhang M, Zhu Y, Wang JH: Ca2+−calmodulin signalling pathway upregulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience. 2004, 127: 637-647. 10.1016/j.neuroscience.2004.05.056.CrossRefPubMed
67.
go back to reference Wang J-H: Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003, 60: 53-58. 10.1016/S0361-9230(03)00026-1.CrossRefPubMed Wang J-H: Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003, 60: 53-58. 10.1016/S0361-9230(03)00026-1.CrossRefPubMed
68.
go back to reference Chen N, Zhu Y, Gao X, Guan S, Wang J-H: Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006, 346: 281-287. 10.1016/j.bbrc.2006.05.120.CrossRefPubMed Chen N, Zhu Y, Gao X, Guan S, Wang J-H: Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006, 346: 281-287. 10.1016/j.bbrc.2006.05.120.CrossRefPubMed
69.
go back to reference Chen N, Chen SL, Wu YL, Wang JH: The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006, 340: 151-157. 10.1016/j.bbrc.2005.11.170.CrossRefPubMed Chen N, Chen SL, Wu YL, Wang JH: The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006, 340: 151-157. 10.1016/j.bbrc.2005.11.170.CrossRefPubMed
70.
go back to reference Chen N, Chen X, Yu J, Wang J-H: After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006, 346: 938-945. 10.1016/j.bbrc.2006.06.003.CrossRefPubMed Chen N, Chen X, Yu J, Wang J-H: After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006, 346: 938-945. 10.1016/j.bbrc.2006.06.003.CrossRefPubMed
71.
go back to reference Chen N, Yu J, Qian H, Ge R, Wang JH: Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One. 2010, 5 (7): e11868-10.1371/journal.pone.0011868.PubMedCentralCrossRefPubMed Chen N, Yu J, Qian H, Ge R, Wang JH: Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One. 2010, 5 (7): e11868-10.1371/journal.pone.0011868.PubMedCentralCrossRefPubMed
72.
go back to reference Zhao J, Wang D, Wang J-H: Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Molecular Brain. 2012, 5 (12): 1-10. Zhao J, Wang D, Wang J-H: Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Molecular Brain. 2012, 5 (12): 1-10.
Metadata
Title
Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs
Authors
Guanjun Zhang
Zilong Gao
Sudong Guan
Yan Zhu
Jin-Hui Wang
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2013
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-6-2

Other articles of this Issue 1/2013

Molecular Brain 1/2013 Go to the issue