Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2014

Open Access 01-12-2014 | Research

Impaired Cav-1 expression in SSc mesenchymal cells upregulates VEGF signaling: a link between vascular involvement and fibrosis

Authors: Paola Cipriani, Paola Di Benedetto, Daria Capece, Francesca Zazzeroni, Vasiliki Liakouli, Piero Ruscitti, Ilenia Pantano, Onorina Berardicurti, Francesco Carubbi, Edoardo Alesse, Roberto Giacomelli

Published in: Fibrogenesis & Tissue Repair | Issue 1/2014

Login to get access

Abstract

Background

Systemic sclerosis (SSc) is characterized by vascular alteration and fibrosis, the former probably leading to fibrosis via the ability of both endothelial cells and pericytes to differentiate toward myofibroblast. It is well known that vascular endothelial growth factor A (VEGF-A, hereafter referred to as VEGF) may induce a profibrotic phenotype on perivascular cells. Caveolin-1 (Cav-1) is involved in the regulation of VEGF signaling, playing a role in the transport of internalized VEGF receptor 2 (VEGFR2) toward degradation, thus decreasing VEGF signaling. In this work, we assessed the levels of Cav-1 in SSc bone marrow mesenchymal stem cells (SSc-MSCs), a pericyte surrogate, and correlate these results with VEGF signaling, focusing onpotential pathogenic pathways leading to fibrosis.

Results

We explored the VEGF signaling assessing: (1) Cav-1 expression; (2) its co-localization with VEGFR2; (3) the activity of VEGFR2, by IF, immunoprecipitation, and western blot. In SSc-MSCs, Cav-1 levels were lower when compared to healthy controls (HC)-MSCs. Furthermore, the Cav-1/VEGFR2 co-localization and the ubiquitination of VEGFR2 were impaired in SSc-MSCs, suggesting a decreased degradation of the receptor and, as a consequence, the tyrosine phosphorylation of VEGFR2 and the PI3-kinase-Akt pathways were significantly increased when compared to HC. Furthermore, an increased connective tissue growth factor (CTGF) expression was observed in SSc-MSCs. Taken together, these data suggested the upregulation of VEGF signaling in SSc-MSCs. Furthermore, after silencing Cav-1 expression in HC-MSCs, an increased CTGF expression in HC-MSCs was observed, mirroring the results obtained in SSc-MSCs, and confirming the potential role that the lack of Cav-1 may play in the persistent VEGF signaling .

Conclusions

During SSc, the lower levels of Cav-1 may contribute to the pathogenesis of fibrosis via an upregulation of the VEGF signaling in perivascular cells which are shifted to a profibrotic phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cipriani P, Marrelli A, Liakouli V, Di Benedetto P, Giacomelli R: Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev. 2011, 10: 641-646. 10.1016/j.autrev.2011.04.016.CrossRefPubMed Cipriani P, Marrelli A, Liakouli V, Di Benedetto P, Giacomelli R: Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev. 2011, 10: 641-646. 10.1016/j.autrev.2011.04.016.CrossRefPubMed
2.
go back to reference Gabrielli A, Avvedimento EV, Krieg T: Scleroderma. N Engl J Med. 2009, 360: 1989-2003. 10.1056/NEJMra0806188.CrossRefPubMed Gabrielli A, Avvedimento EV, Krieg T: Scleroderma. N Engl J Med. 2009, 360: 1989-2003. 10.1056/NEJMra0806188.CrossRefPubMed
4.
go back to reference Beyer C, Distler O, Distler JH: Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheuma. 2012, 24: 274-280. 10.1097/BOR.0b013e3283524b9a.CrossRef Beyer C, Distler O, Distler JH: Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheuma. 2012, 24: 274-280. 10.1097/BOR.0b013e3283524b9a.CrossRef
5.
go back to reference Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006, 103: 13180-13185. 10.1073/pnas.0605669103.PubMedCentralCrossRefPubMed Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006, 103: 13180-13185. 10.1073/pnas.0605669103.PubMedCentralCrossRefPubMed
6.
go back to reference Wu Z, Yang L, Cai L, Zhang M, Cheng X, Yang X, Xu J: Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res. 2007, 8: 1-10.1186/1465-9921-8-1.PubMedCentralCrossRefPubMed Wu Z, Yang L, Cai L, Zhang M, Cheng X, Yang X, Xu J: Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res. 2007, 8: 1-10.1186/1465-9921-8-1.PubMedCentralCrossRefPubMed
7.
go back to reference Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y: Endothelial mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010, 43: 161-172. 10.1165/rcmb.2009-0031OC.PubMedCentralCrossRefPubMed Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y: Endothelial mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010, 43: 161-172. 10.1165/rcmb.2009-0031OC.PubMedCentralCrossRefPubMed
8.
go back to reference Kida Y, Duffield JS: Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol. 2011, 38: 467-473. 10.1111/j.1440-1681.2011.05531.x.CrossRefPubMed Kida Y, Duffield JS: Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol. 2011, 38: 467-473. 10.1111/j.1440-1681.2011.05531.x.CrossRefPubMed
9.
go back to reference Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010, 176: 85-97. 10.2353/ajpath.2010.090517.PubMedCentralCrossRefPubMed Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010, 176: 85-97. 10.2353/ajpath.2010.090517.PubMedCentralCrossRefPubMed
10.
go back to reference Duffield JS: The elusive source of myofibroblasts: problem solved?. Nat Med. 2012, 18: 1178-1180. 10.1038/nm.2867.CrossRefPubMed Duffield JS: The elusive source of myofibroblasts: problem solved?. Nat Med. 2012, 18: 1178-1180. 10.1038/nm.2867.CrossRefPubMed
11.
go back to reference Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007, 19: 324-336.CrossRef Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007, 19: 324-336.CrossRef
12.
go back to reference Tormin A, Li O, Brune JC, Walsh S, Schütz B, Ehinger M, Ditzel N, Kassem M, Scheding S: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011, 12: 5067-5077.CrossRef Tormin A, Li O, Brune JC, Walsh S, Schütz B, Ehinger M, Ditzel N, Kassem M, Scheding S: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011, 12: 5067-5077.CrossRef
13.
go back to reference Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood-Evans A, Wood J, Lorens JB: Mural cell associated VEGF is required for organotypic vessel formation. PLoS One. 2009, 4: e5798-10.1371/journal.pone.0005798.PubMedCentralCrossRefPubMed Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood-Evans A, Wood J, Lorens JB: Mural cell associated VEGF is required for organotypic vessel formation. PLoS One. 2009, 4: e5798-10.1371/journal.pone.0005798.PubMedCentralCrossRefPubMed
14.
go back to reference Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I, Sundback CA, Zhang Z, Vacanti JP, Hauschka PV, Grottkau BE: Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev. 2009, 5: 437-445. 10.1007/s12015-009-9097-6.CrossRefPubMed Cai X, Lin Y, Friedrich CC, Neville C, Pomerantseva I, Sundback CA, Zhang Z, Vacanti JP, Hauschka PV, Grottkau BE: Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev. 2009, 5: 437-445. 10.1007/s12015-009-9097-6.CrossRefPubMed
15.
go back to reference Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault BA: Perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008, 3: 301-313. 10.1016/j.stem.2008.07.003.CrossRefPubMed Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault BA: Perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008, 3: 301-313. 10.1016/j.stem.2008.07.003.CrossRefPubMed
16.
go back to reference Challier JC, Kacemi A, Olive G: Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell Mol Biol. 1995, 41: 233-241.PubMed Challier JC, Kacemi A, Olive G: Mixed culture of pericytes and endothelial cells from fetal microvessels of the human placenta. Cell Mol Biol. 1995, 41: 233-241.PubMed
17.
go back to reference Helmbold P, Nayak RC, Marsch WC, Herman IM: Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res. 2001, 61: 160-165. 10.1006/mvre.2000.2292.CrossRefPubMed Helmbold P, Nayak RC, Marsch WC, Herman IM: Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc Res. 2001, 61: 160-165. 10.1006/mvre.2000.2292.CrossRefPubMed
18.
go back to reference Cipriani P, Marrelli A, Di B, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, Screpanti I, Giacomelli R: Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis. 2013, 16: 595-607. 10.1007/s10456-013-9338-9.CrossRefPubMed Cipriani P, Marrelli A, Di B, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, Screpanti I, Giacomelli R: Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis. 2013, 16: 595-607. 10.1007/s10456-013-9338-9.CrossRefPubMed
19.
go back to reference Eming SA, Krieg T: Molecular mechanisms of VEGF-A action during tissue repair. J Investig Dermatol Symp Proc. 2006, 11: 79-86. 10.1038/sj.jidsymp.5650016.CrossRefPubMed Eming SA, Krieg T: Molecular mechanisms of VEGF-A action during tissue repair. J Investig Dermatol Symp Proc. 2006, 11: 79-86. 10.1038/sj.jidsymp.5650016.CrossRefPubMed
20.
go back to reference Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M: Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16: 585-601. 10.1111/j.1524-475X.2008.00410.x.CrossRefPubMed Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M: Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16: 585-601. 10.1111/j.1524-475X.2008.00410.x.CrossRefPubMed
21.
go back to reference Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL: Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1 and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem. 2000, 275: 40725-40731. 10.1074/jbc.M006509200.CrossRefPubMed Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL: Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1 and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem. 2000, 275: 40725-40731. 10.1074/jbc.M006509200.CrossRefPubMed
22.
go back to reference Ren S, Johnson B, Kida Y, Ip C, Davidson KC, Lin SL, Kobayashi A, Lang RA, Hadjantonakis AK, Moon RT, Duffield JS: LRP-6 is co-receptor for multiple fibrogenic pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A. 2013, d110: 1440-1445.CrossRef Ren S, Johnson B, Kida Y, Ip C, Davidson KC, Lin SL, Kobayashi A, Lang RA, Hadjantonakis AK, Moon RT, Duffield JS: LRP-6 is co-receptor for multiple fibrogenic pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A. 2013, d110: 1440-1445.CrossRef
23.
go back to reference Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, Gay RE, Michel BA, Brühlmann P, Müller-Ladner U, Gay S, Matucci-Cerinic M: Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. M Arthritis Res. 2002, 4: R11-10.1186/ar596.CrossRef Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, Gay RE, Michel BA, Brühlmann P, Müller-Ladner U, Gay S, Matucci-Cerinic M: Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. M Arthritis Res. 2002, 4: R11-10.1186/ar596.CrossRef
24.
go back to reference Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, Michel BA, Gay RE, Müller-Ladner U, Matucci-Cerinic M, Plate KH, Gassmann M, Gay S: Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004, 95: 109-116. 10.1161/01.RES.0000134644.89917.96.CrossRefPubMed Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, Michel BA, Gay RE, Müller-Ladner U, Matucci-Cerinic M, Plate KH, Gassmann M, Gay S: Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004, 95: 109-116. 10.1161/01.RES.0000134644.89917.96.CrossRefPubMed
25.
go back to reference Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C: VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A. Mol Cancer. 2010, 31: 320. Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C: VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A. Mol Cancer. 2010, 31: 320.
26.
go back to reference Manetti M, Guiducci S, Romano E, Bellando-Randone S, Lepri G, Bruni C, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M: Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis. 2013, 72: 1425-1427. 10.1136/annrheumdis-2012-203183.CrossRefPubMed Manetti M, Guiducci S, Romano E, Bellando-Randone S, Lepri G, Bruni C, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M: Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis. 2013, 72: 1425-1427. 10.1136/annrheumdis-2012-203183.CrossRefPubMed
27.
go back to reference Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C: Do anti-angiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale. PLoS One. 2012, 7: e35231-10.1371/journal.pone.0035231.PubMedCentralCrossRefPubMed Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C: Do anti-angiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale. PLoS One. 2012, 7: e35231-10.1371/journal.pone.0035231.PubMedCentralCrossRefPubMed
28.
go back to reference Palade GE: Fine structure of blood capillaries. J Appl Physiol. 1953, 24: 1424-1436. Palade GE: Fine structure of blood capillaries. J Appl Physiol. 1953, 24: 1424-1436.
30.
go back to reference Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG: Caveolin, a protein component of caveolae membrane coats. Cell. 1992, 68: 673-682. 10.1016/0092-8674(92)90143-Z.CrossRefPubMed Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG: Caveolin, a protein component of caveolae membrane coats. Cell. 1992, 68: 673-682. 10.1016/0092-8674(92)90143-Z.CrossRefPubMed
31.
go back to reference Fra AM, Williamson E, Simons K, Parton RG: De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A. 1995, 92: 8655-8659. 10.1073/pnas.92.19.8655.PubMedCentralCrossRefPubMed Fra AM, Williamson E, Simons K, Parton RG: De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A. 1995, 92: 8655-8659. 10.1073/pnas.92.19.8655.PubMedCentralCrossRefPubMed
32.
go back to reference Murata M, Peranen J, Schreiner R, Weiland F, Kurzchalia T, Simons K: VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A. 1995, 92: 10339-10343. 10.1073/pnas.92.22.10339.PubMedCentralCrossRefPubMed Murata M, Peranen J, Schreiner R, Weiland F, Kurzchalia T, Simons K: VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A. 1995, 92: 10339-10343. 10.1073/pnas.92.22.10339.PubMedCentralCrossRefPubMed
33.
go back to reference Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Béliveau R: Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell. 2003, 14: 334-347. 10.1091/mbc.E02-07-0379.PubMedCentralCrossRefPubMed Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Béliveau R: Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell. 2003, 14: 334-347. 10.1091/mbc.E02-07-0379.PubMedCentralCrossRefPubMed
34.
go back to reference Tourkina E, Richard M, Gööz P, Bonner M, Pannu J, Harley R, Bernatchez PN, Sessa WC, Silver RM, Hoffman S: Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L843-L861. 10.1152/ajplung.00295.2007.CrossRefPubMed Tourkina E, Richard M, Gööz P, Bonner M, Pannu J, Harley R, Bernatchez PN, Sessa WC, Silver RM, Hoffman S: Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L843-L861. 10.1152/ajplung.00295.2007.CrossRefPubMed
35.
go back to reference Del Galdo F, Sotgia F, de Almeida CJ, Jasmin JF, Musick M, Lisanti MP, Jiménez SA: Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 2008, 58: 2854-2865. 10.1002/art.23791.CrossRefPubMed Del Galdo F, Sotgia F, de Almeida CJ, Jasmin JF, Musick M, Lisanti MP, Jiménez SA: Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 2008, 58: 2854-2865. 10.1002/art.23791.CrossRefPubMed
36.
go back to reference Haines P, Hant FN, Lafyatis R, Trojanowska M, Bujor AM: Elevated expression of cav-1 in a subset of SSc fibroblasts contributes to constitutive Alk1/Smad1 activation. J Cell Mol Med. 2012, 16: 2238-2246. 10.1111/j.1582-4934.2012.01537.x.PubMedCentralCrossRefPubMed Haines P, Hant FN, Lafyatis R, Trojanowska M, Bujor AM: Elevated expression of cav-1 in a subset of SSc fibroblasts contributes to constitutive Alk1/Smad1 activation. J Cell Mol Med. 2012, 16: 2238-2246. 10.1111/j.1582-4934.2012.01537.x.PubMedCentralCrossRefPubMed
37.
go back to reference Krieg T, Abraham D, Lafyatis R: Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther. 2007, 9 (Suppl 2): S4-10.1186/ar2188.PubMedCentralCrossRefPubMed Krieg T, Abraham D, Lafyatis R: Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther. 2007, 9 (Suppl 2): S4-10.1186/ar2188.PubMedCentralCrossRefPubMed
38.
go back to reference Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012, 18: 1262-1270. 10.1038/nm.2848.CrossRefPubMed Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012, 18: 1262-1270. 10.1038/nm.2848.CrossRefPubMed
39.
40.
go back to reference Citri A, Yarden Y: EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006, 7: 505-516. 10.1038/nrm1962.CrossRefPubMed Citri A, Yarden Y: EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006, 7: 505-516. 10.1038/nrm1962.CrossRefPubMed
41.
go back to reference Mellman I: Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996, 12: 575-625. 10.1146/annurev.cellbio.12.1.575.CrossRefPubMed Mellman I: Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996, 12: 575-625. 10.1146/annurev.cellbio.12.1.575.CrossRefPubMed
42.
go back to reference Rink J, Ghigo E, Kalaidzidis Y, Zerial M: Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005, 122: 735-749. 10.1016/j.cell.2005.06.043.CrossRefPubMed Rink J, Ghigo E, Kalaidzidis Y, Zerial M: Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005, 122: 735-749. 10.1016/j.cell.2005.06.043.CrossRefPubMed
43.
go back to reference Mosesson Y, Mills GB, Yarden Y: Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008, 8: 835-850. 10.1038/nrc2521.CrossRefPubMed Mosesson Y, Mills GB, Yarden Y: Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008, 8: 835-850. 10.1038/nrc2521.CrossRefPubMed
44.
go back to reference Mukherjee S, Tessema M, Wandinger-Ness A: Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res. 2006, 98: 743-756. 10.1161/01.RES.0000214545.99387.e3.CrossRefPubMed Mukherjee S, Tessema M, Wandinger-Ness A: Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res. 2006, 98: 743-756. 10.1161/01.RES.0000214545.99387.e3.CrossRefPubMed
45.
go back to reference Navarro A, Anand-Apte B, Parat MO: A role for caveolae in cell migration. FASEB J. 2004, 18: 1801-1811. 10.1096/fj.04-2516rev.CrossRefPubMed Navarro A, Anand-Apte B, Parat MO: A role for caveolae in cell migration. FASEB J. 2004, 18: 1801-1811. 10.1096/fj.04-2516rev.CrossRefPubMed
46.
go back to reference Shaul PW, Anderson RG: Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998, 275: L843-L851.PubMed Shaul PW, Anderson RG: Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998, 275: L843-L851.PubMed
47.
go back to reference Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP: Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. J Biol Chem. 1999, 28: 15781-15785.CrossRef Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP: Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. J Biol Chem. 1999, 28: 15781-15785.CrossRef
48.
go back to reference Liao WX, Feng L, Zhang H, Zheng J, Moore TR, Chen DB: Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol Endocrinol. 2009, 23: 1428-1444. 10.1210/me.2008-0475.PubMedCentralCrossRefPubMed Liao WX, Feng L, Zhang H, Zheng J, Moore TR, Chen DB: Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol Endocrinol. 2009, 23: 1428-1444. 10.1210/me.2008-0475.PubMedCentralCrossRefPubMed
49.
go back to reference Wu T, Zhang B, Ye F, Xiao Z: A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src. Am J Physiol Renal Physiol. 2013, 15: F820-F830.CrossRef Wu T, Zhang B, Ye F, Xiao Z: A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src. Am J Physiol Renal Physiol. 2013, 15: F820-F830.CrossRef
50.
go back to reference Heerklotz H: Triton promotes domain formation in lipid raft mixtures. Biogeosciences. 2002, 83: 2693-2701. Heerklotz H: Triton promotes domain formation in lipid raft mixtures. Biogeosciences. 2002, 83: 2693-2701.
51.
go back to reference Schmidt-Glenewinkel H, Reinz E, Bulashevska S, Beaudouin J, Legewie S, Alonso A, Elis R: Multiparametric image analysis reveals role of Caveolin1 in endosomal progression rather than internalization of EGFR. FEBS Lett. 2012, 586: 1179-1189. 10.1016/j.febslet.2012.02.041.CrossRefPubMed Schmidt-Glenewinkel H, Reinz E, Bulashevska S, Beaudouin J, Legewie S, Alonso A, Elis R: Multiparametric image analysis reveals role of Caveolin1 in endosomal progression rather than internalization of EGFR. FEBS Lett. 2012, 586: 1179-1189. 10.1016/j.febslet.2012.02.041.CrossRefPubMed
52.
go back to reference Meyer C, Liu Y, Dooley S: Caveolin and TGF-β entanglements. J Cell Physiol. 2013, 228: 2097-2102. 10.1002/jcp.24380.CrossRefPubMed Meyer C, Liu Y, Dooley S: Caveolin and TGF-β entanglements. J Cell Physiol. 2013, 228: 2097-2102. 10.1002/jcp.24380.CrossRefPubMed
53.
go back to reference Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier- Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S: Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem. 2004, 279: 26754-26761. 10.1074/jbc.M311802200.CrossRefPubMed Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier- Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S: Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem. 2004, 279: 26754-26761. 10.1074/jbc.M311802200.CrossRefPubMed
54.
go back to reference Horowitz A, Seerapu HR: Regulation of VEGF signaling by membrane traffic. Cell Signal. 2012, 24: 1810-1820. 10.1016/j.cellsig.2012.05.007.CrossRefPubMed Horowitz A, Seerapu HR: Regulation of VEGF signaling by membrane traffic. Cell Signal. 2012, 24: 1810-1820. 10.1016/j.cellsig.2012.05.007.CrossRefPubMed
55.
go back to reference Le Roy C, Wrana JL: Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol. 2005, 6: 112-126. 10.1038/nrm1571.CrossRefPubMed Le Roy C, Wrana JL: Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol. 2005, 6: 112-126. 10.1038/nrm1571.CrossRefPubMed
56.
go back to reference Kapeller R, Chakrabarti R, Cantley L, Fay F, Corvera S: Internalization of activated platelet-derived growth factor receptorphosphatidylinositol-3 kinase complexes: potential interactions with the microtubule cytoskeleton. Mol Cell Biol. 1993, 13: 6052-6063.PubMedCentralCrossRefPubMed Kapeller R, Chakrabarti R, Cantley L, Fay F, Corvera S: Internalization of activated platelet-derived growth factor receptorphosphatidylinositol-3 kinase complexes: potential interactions with the microtubule cytoskeleton. Mol Cell Biol. 1993, 13: 6052-6063.PubMedCentralCrossRefPubMed
57.
go back to reference Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S: Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A. 2005, 102: 2760-2765. 10.1073/pnas.0409817102.PubMedCentralCrossRefPubMed Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S: Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A. 2005, 102: 2760-2765. 10.1073/pnas.0409817102.PubMedCentralCrossRefPubMed
58.
go back to reference Marmor MD, Yarden Y: Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene. 2004, 23: 2057-2070. 10.1038/sj.onc.1207390.CrossRefPubMed Marmor MD, Yarden Y: Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene. 2004, 23: 2057-2070. 10.1038/sj.onc.1207390.CrossRefPubMed
59.
go back to reference Meissner M, Reichenbach G, Stein M, Hrgovic I, Kaufmann R, Gille J: Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. Cancer Res. 2009, 69: 1976-1984. 10.1158/0008-5472.CAN-08-3150.CrossRefPubMed Meissner M, Reichenbach G, Stein M, Hrgovic I, Kaufmann R, Gille J: Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. Cancer Res. 2009, 69: 1976-1984. 10.1158/0008-5472.CAN-08-3150.CrossRefPubMed
60.
go back to reference Rahimi N: A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis. Biochem Soc Trans. 2009, 37: 1189-1192. 10.1042/BST0371189.CrossRefPubMed Rahimi N: A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis. Biochem Soc Trans. 2009, 37: 1189-1192. 10.1042/BST0371189.CrossRefPubMed
61.
go back to reference Shi-Wen X, Leask A, Abraham D: Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008, 19: 133-144. 10.1016/j.cytogfr.2008.01.002.CrossRefPubMed Shi-Wen X, Leask A, Abraham D: Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008, 19: 133-144. 10.1016/j.cytogfr.2008.01.002.CrossRefPubMed
62.
go back to reference Brigstock DR: Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal. 2010, 4: 1-4. 10.1007/s12079-009-0071-5.PubMedCentralCrossRefPubMed Brigstock DR: Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal. 2010, 4: 1-4. 10.1007/s12079-009-0071-5.PubMedCentralCrossRefPubMed
63.
go back to reference Sato S, Nagaoka T, Hasegawa M, Tamatani T, Nakanishi T, Takigawa M, Takehara K: Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. 2000, 27: 149-154.PubMed Sato S, Nagaoka T, Hasegawa M, Tamatani T, Nakanishi T, Takigawa M, Takehara K: Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. 2000, 27: 149-154.PubMed
64.
go back to reference Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Grotendorst GR, Takehara K: Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol. 1995, 105: 280-284. 10.1111/1523-1747.ep12318465.CrossRefPubMed Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Grotendorst GR, Takehara K: Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol. 1995, 105: 280-284. 10.1111/1523-1747.ep12318465.CrossRefPubMed
65.
go back to reference Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR: Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol. 1996, 107: 404-411. 10.1111/1523-1747.ep12363389.CrossRefPubMed Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR: Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol. 1996, 107: 404-411. 10.1111/1523-1747.ep12363389.CrossRefPubMed
66.
go back to reference Lipson KE, Wong C, Teng Y, Spong S: CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012, 6 (Suppl. 1): S24.CrossRef Lipson KE, Wong C, Teng Y, Spong S: CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012, 6 (Suppl. 1): S24.CrossRef
67.
go back to reference Lee CH, Shah B, Moioli EK, Mao JJ: CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010, 120: 3340-3349. 10.1172/JCI43230.PubMedCentralCrossRefPubMed Lee CH, Shah B, Moioli EK, Mao JJ: CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010, 120: 3340-3349. 10.1172/JCI43230.PubMedCentralCrossRefPubMed
Metadata
Title
Impaired Cav-1 expression in SSc mesenchymal cells upregulates VEGF signaling: a link between vascular involvement and fibrosis
Authors
Paola Cipriani
Paola Di Benedetto
Daria Capece
Francesca Zazzeroni
Vasiliki Liakouli
Piero Ruscitti
Ilenia Pantano
Onorina Berardicurti
Francesco Carubbi
Edoardo Alesse
Roberto Giacomelli
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue 1/2014
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/1755-1536-7-13

Other articles of this Issue 1/2014

Fibrogenesis & Tissue Repair 1/2014 Go to the issue