Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2012

Open Access 01-12-2012 | Methodology

Mass spectrometry quantification of clusterin in the human brain

Authors: Junjun Chen, Meiyao Wang, Illarion V Turko

Published in: Molecular Neurodegeneration | Issue 1/2012

Login to get access

Abstract

Background

The multifunctional glycoprotein clusterin has been associated with late-onset Alzheimer’s disease (AD). Further investigation to define the role of clusterin in AD phenotypes would be aided by the development of techniques to quantify level, potential post-translational modifications, and isoforms of clusterin. We have developed a quantitative technique based on multiple reaction monitoring (MRM) mass spectrometry to measure clusterin in human postmortem brain tissues.

Results

A stable isotope-labeled concatenated peptide (QconCAT) bearing selected peptides from clusterin was expressed with an in vitro translation system and purified. This clusterin QconCAT was validated for use as an internal standard for clusterin quantification using MRM mass spectrometry. Measurements were performed on the human postmortem frontal and temporal cortex from control and severe AD cases. During brain tissues processing, 1% SDS was used in the homogenization buffer to preserve potential post-translational modifications of clusterin. However, MRM quantifications in the brain did not suggest phosphorylation of Thr393, Ser394, and Ser396 residues reported for clusterin in serum. MRM quantifications in the frontal cortex demonstrated significantly higher (P < 0.01) level of clusterin in severe AD group (39.1 ± 9.1 pmol/mg tissue protein) in comparison to control group (25.4 ± 4.4 pmol/mg tissue protein). In the temporal cortex, the clusterin levels were not significantly different, 29.0 ± 7.9 pmol/mg tissue protein and 28.0 ± 8.4 pmol/mg tissue protein in control and severe AD groups, respectively.

Conclusions

The proposed protocol is a universal quantitative technique to assess expression level of clusterin. It is expected that application of this protocol to quantification of various clusterin isoforms and potential post-translational modifications will be helpful in addressing the role of clusterin in AD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009, 41: 1088-1093.PubMedCentralCrossRefPubMed Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009, 41: 1088-1093.PubMedCentralCrossRefPubMed
2.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009, 41: 1094-1099.CrossRefPubMed Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009, 41: 1094-1099.CrossRefPubMed
3.
go back to reference May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE: Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron. 1990, 5: 831-839.CrossRefPubMed May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE: Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron. 1990, 5: 831-839.CrossRefPubMed
4.
go back to reference Lidstrom AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K: Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer's disease. Exp Neurol. 1998, 154: 511-521.CrossRefPubMed Lidstrom AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K: Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer's disease. Exp Neurol. 1998, 154: 511-521.CrossRefPubMed
5.
go back to reference Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K: Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006, 48: 718-728.CrossRefPubMed Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K: Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006, 48: 718-728.CrossRefPubMed
6.
go back to reference Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, et al: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 2010, 67: 739-748.PubMedCentralCrossRefPubMed Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, et al: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 2010, 67: 739-748.PubMedCentralCrossRefPubMed
7.
go back to reference Harr SD, Uint L, Hollister R, Hyman BT, Mendez AJ: Brain expression of apolipoproteins E, J, and A-I in Alzheimer's disease. J Neurochem. 1996, 66: 2429-2435.CrossRefPubMed Harr SD, Uint L, Hollister R, Hyman BT, Mendez AJ: Brain expression of apolipoproteins E, J, and A-I in Alzheimer's disease. J Neurochem. 1996, 66: 2429-2435.CrossRefPubMed
8.
go back to reference Baig S, Palmer LE, Owen MJ, Williams J, Kehoe PG, Love S: Clusterin mRNA and protein in Alzheimer's disease. J Alzheimers Dis. 2012, 28: 337-344.PubMed Baig S, Palmer LE, Owen MJ, Williams J, Kehoe PG, Love S: Clusterin mRNA and protein in Alzheimer's disease. J Alzheimers Dis. 2012, 28: 337-344.PubMed
9.
go back to reference Leskov KS, Klokov DY, Li J, Kinsella TJ, Boothman DA: Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem. 2003, 278: 11590-11600.CrossRefPubMed Leskov KS, Klokov DY, Li J, Kinsella TJ, Boothman DA: Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem. 2003, 278: 11590-11600.CrossRefPubMed
10.
go back to reference Zhou W, Ross MM, Tessitore A, Ornstein D, Vanmeter A, Liotta LA, Petricoin EF: An initial characterization of the serum phosphoproteome. J Proteome Res. 2009, 8: 5523-5531.PubMedCentralCrossRefPubMed Zhou W, Ross MM, Tessitore A, Ornstein D, Vanmeter A, Liotta LA, Petricoin EF: An initial characterization of the serum phosphoproteome. J Proteome Res. 2009, 8: 5523-5531.PubMedCentralCrossRefPubMed
11.
go back to reference Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003, 100: 6940-6945.PubMedCentralCrossRefPubMed Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003, 100: 6940-6945.PubMedCentralCrossRefPubMed
12.
go back to reference Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ: Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods. 2005, 2: 587-589.CrossRefPubMed Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ: Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods. 2005, 2: 587-589.CrossRefPubMed
13.
go back to reference Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J: Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 2007, 6: 2139-2149.CrossRefPubMed Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J: Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 2007, 6: 2139-2149.CrossRefPubMed
14.
go back to reference Nanavati D, Gucek M, Milne JL, Subramaniam S, Markey SP: Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards. Mol Cell Proteomics. 2008, 7: 442-447.CrossRefPubMed Nanavati D, Gucek M, Milne JL, Subramaniam S, Markey SP: Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards. Mol Cell Proteomics. 2008, 7: 442-447.CrossRefPubMed
15.
go back to reference Bislev SL, Kusebauch U, Codrea MC, Beynon RJ, Harman VM, Rontved CM, Aebersold R, Moritz RL, Bendixen E: Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res. 2012, 11: 1832-1843.PubMedCentralCrossRefPubMed Bislev SL, Kusebauch U, Codrea MC, Beynon RJ, Harman VM, Rontved CM, Aebersold R, Moritz RL, Bendixen E: Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res. 2012, 11: 1832-1843.PubMedCentralCrossRefPubMed
16.
go back to reference Kito K, Ota K, Fujita T, Ito T: A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res. 2007, 6: 792-800.CrossRefPubMed Kito K, Ota K, Fujita T, Ito T: A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res. 2007, 6: 792-800.CrossRefPubMed
17.
go back to reference Mirzaei H, McBee JK, Watts J, Aebersold R: Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics. 2008, 7: 813-823.PubMedCentralCrossRefPubMed Mirzaei H, McBee JK, Watts J, Aebersold R: Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics. 2008, 7: 813-823.PubMedCentralCrossRefPubMed
18.
go back to reference Liao WL, Turko IV: Strategy combining separation of isotope-labeled unfolded proteins and matrix-assisted laser desorption/ionization mass spectrometry analysis enables quantification of a wide range of serum proteins. Anal Biochem. 2008, 377: 55-61.CrossRefPubMed Liao WL, Turko IV: Strategy combining separation of isotope-labeled unfolded proteins and matrix-assisted laser desorption/ionization mass spectrometry analysis enables quantification of a wide range of serum proteins. Anal Biochem. 2008, 377: 55-61.CrossRefPubMed
19.
go back to reference Liao WL, Heo GY, Dodder NG, Pikuleva IA, Turko IV: Optimizing the conditions of a multiple reaction monitoring assay for membrane proteins: quantification of cytochrome P450 11A1 and adrenodoxin reductase in bovine adrenal cortex and retina. Anal Chem. 2010, 82: 5760-5767.PubMedCentralCrossRefPubMed Liao WL, Heo GY, Dodder NG, Pikuleva IA, Turko IV: Optimizing the conditions of a multiple reaction monitoring assay for membrane proteins: quantification of cytochrome P450 11A1 and adrenodoxin reductase in bovine adrenal cortex and retina. Anal Chem. 2010, 82: 5760-5767.PubMedCentralCrossRefPubMed
Metadata
Title
Mass spectrometry quantification of clusterin in the human brain
Authors
Junjun Chen
Meiyao Wang
Illarion V Turko
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2012
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-41

Other articles of this Issue 1/2012

Molecular Neurodegeneration 1/2012 Go to the issue