Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2012

Open Access 01-12-2012 | Research article

Regulation of mitochondrial permeability transition pore by PINK1

Authors: Clement A Gautier, Emilie Giaime, Erica Caballero, Lucía Núñez, Zhiyin Song, David Chan, Carlos Villalobos, Jie Shen

Published in: Molecular Neurodegeneration | Issue 1/2012

Login to get access

Abstract

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson’s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1−/− cells recapitulate the respiratory defect in isolated mitochondria from PINK1−/− mouse brains, suggesting that these PINK1−/− cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1−/− cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1−/− cells, and this genotypic difference between PINK1−/− and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1−/− cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1−/− and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1−/− compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1−/− cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW: Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science. 2004, 304: 1158-1160. 10.1126/science.1096284.CrossRefPubMed Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW: Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science. 2004, 304: 1158-1160. 10.1126/science.1096284.CrossRefPubMed
2.
go back to reference Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S: The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008, 105: 12022-12027. 10.1073/pnas.0802814105.PubMedCentralCrossRefPubMed Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S: The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008, 105: 12022-12027. 10.1073/pnas.0802814105.PubMedCentralCrossRefPubMed
3.
go back to reference Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD: Mitochondrial complex I deficiency in Parkinson's disease. Lancet. 1989, 1: 1269-CrossRefPubMed Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD: Mitochondrial complex I deficiency in Parkinson's disease. Lancet. 1989, 1: 1269-CrossRefPubMed
4.
go back to reference Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983, 219: 979-980. 10.1126/science.6823561.CrossRefPubMed Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983, 219: 979-980. 10.1126/science.6823561.CrossRefPubMed
5.
go back to reference Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000, 3: 1301-1306. 10.1038/81834.CrossRefPubMed Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000, 3: 1301-1306. 10.1038/81834.CrossRefPubMed
6.
go back to reference Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006, 441: 1157-1161. 10.1038/nature04788.CrossRefPubMed Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006, 441: 1157-1161. 10.1038/nature04788.CrossRefPubMed
7.
go back to reference Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006, 441: 1162-1166. 10.1038/nature04779.CrossRefPubMed Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006, 441: 1162-1166. 10.1038/nature04779.CrossRefPubMed
8.
go back to reference Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One. 2010, 5: e10054-10.1371/journal.pone.0010054.PubMedCentralCrossRefPubMed Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One. 2010, 5: e10054-10.1371/journal.pone.0010054.PubMedCentralCrossRefPubMed
9.
go back to reference Deng H, Dodson MW, Huang H, Guo M: The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008, 105: 14503-14508. 10.1073/pnas.0803998105.PubMedCentralCrossRefPubMed Deng H, Dodson MW, Huang H, Guo M: The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008, 105: 14503-14508. 10.1073/pnas.0803998105.PubMedCentralCrossRefPubMed
10.
go back to reference Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R, Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ, Schmid B, Haass C: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci. 2007, 27: 12413-12418. 10.1523/JNEUROSCI.0719-07.2007.CrossRefPubMed Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R, Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ, Schmid B, Haass C: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci. 2007, 27: 12413-12418. 10.1523/JNEUROSCI.0719-07.2007.CrossRefPubMed
11.
go back to reference Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B: Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009, 1: 99-111. 10.1002/emmm.200900006.PubMedCentralCrossRefPubMed Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B: Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009, 1: 99-111. 10.1002/emmm.200900006.PubMedCentralCrossRefPubMed
12.
go back to reference Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009, 284: 13843-13855. 10.1074/jbc.M808515200.PubMedCentralCrossRefPubMed Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009, 284: 13843-13855. 10.1074/jbc.M808515200.PubMedCentralCrossRefPubMed
13.
go back to reference Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF: Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem. 2009, 284: 22938-22951. 10.1074/jbc.M109.035774.PubMedCentralCrossRefPubMed Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF: Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem. 2009, 284: 22938-22951. 10.1074/jbc.M109.035774.PubMedCentralCrossRefPubMed
14.
go back to reference Yu W, Sun Y, Guo S, Lu B: The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011, 20: 3227-3240. 10.1093/hmg/ddr235.PubMedCentralCrossRefPubMed Yu W, Sun Y, Guo S, Lu B: The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011, 20: 3227-3240. 10.1093/hmg/ddr235.PubMedCentralCrossRefPubMed
15.
go back to reference Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009, 33: 627-638. 10.1016/j.molcel.2009.02.013.PubMedCentralCrossRefPubMed Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009, 33: 627-638. 10.1016/j.molcel.2009.02.013.PubMedCentralCrossRefPubMed
16.
go back to reference Amo T, Sato S, Saiki S, Wolf AM, Toyomizu M, Gautier CA, Shen J, Ohta S, Hattori N: Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol Dis. 2010, 41: 111-118.CrossRefPubMed Amo T, Sato S, Saiki S, Wolf AM, Toyomizu M, Gautier CA, Shen J, Ohta S, Hattori N: Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol Dis. 2010, 41: 111-118.CrossRefPubMed
17.
go back to reference Piccoli C, Sardanelli A, Scrima R, Ripoli M, Quarato G, D'Aprile A, Bellomo F, Scacco S, De Michele G, Filla A, Iuso A, Boffoli D, Capitanio N, Papa S: Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res. 2008, 33: 2565-2574. 10.1007/s11064-008-9729-2.CrossRefPubMed Piccoli C, Sardanelli A, Scrima R, Ripoli M, Quarato G, D'Aprile A, Bellomo F, Scacco S, De Michele G, Filla A, Iuso A, Boffoli D, Capitanio N, Papa S: Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res. 2008, 33: 2565-2574. 10.1007/s11064-008-9729-2.CrossRefPubMed
18.
go back to reference Gautier CA, Kitada T, Shen J: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A. 2008, 105: 11364-11369. 10.1073/pnas.0802076105.PubMedCentralCrossRefPubMed Gautier CA, Kitada T, Shen J: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A. 2008, 105: 11364-11369. 10.1073/pnas.0802076105.PubMedCentralCrossRefPubMed
19.
go back to reference Gegg ME, Cooper JM, Schapira AH, Taanman JW: Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One. 2009, 4: e4756-10.1371/journal.pone.0004756.PubMedCentralCrossRefPubMed Gegg ME, Cooper JM, Schapira AH, Taanman JW: Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS One. 2009, 4: e4756-10.1371/journal.pone.0004756.PubMedCentralCrossRefPubMed
20.
go back to reference Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, Becker D, Voos W, Leuner K, Muller WE, Kudin AP, Kunz WS, Zimmermann A, Roeper J, Wenzel D, Jendrach M, Garcia-Arencibia M, Fernandez-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert AS, Rub U, Chen A, Nussbaum RL, Auburger G: Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE. 2009, 4: e5777-10.1371/journal.pone.0005777.PubMedCentralCrossRefPubMed Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, Becker D, Voos W, Leuner K, Muller WE, Kudin AP, Kunz WS, Zimmermann A, Roeper J, Wenzel D, Jendrach M, Garcia-Arencibia M, Fernandez-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert AS, Rub U, Chen A, Nussbaum RL, Auburger G: Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE. 2009, 4: e5777-10.1371/journal.pone.0005777.PubMedCentralCrossRefPubMed
21.
go back to reference Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AH: Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One. 2011, 6: e25622-10.1371/journal.pone.0025622.PubMedCentralCrossRefPubMed Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AH: Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One. 2011, 6: e25622-10.1371/journal.pone.0025622.PubMedCentralCrossRefPubMed
22.
go back to reference Watanabe H, Smith MJ, Heilig E, Beglopoulos V, Kelleher RJ, Shen J: Indirect regulation of presenilins in CREB-mediated transcription. J Biol Chem. 2009, 284: 13705-13713. 10.1074/jbc.M809168200.PubMedCentralCrossRefPubMed Watanabe H, Smith MJ, Heilig E, Beglopoulos V, Kelleher RJ, Shen J: Indirect regulation of presenilins in CREB-mediated transcription. J Biol Chem. 2009, 284: 13705-13713. 10.1074/jbc.M809168200.PubMedCentralCrossRefPubMed
23.
go back to reference Frezza C, Cipolat S, Scorrano L: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007, 2: 287-295. 10.1038/nprot.2006.478.CrossRefPubMed Frezza C, Cipolat S, Scorrano L: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007, 2: 287-295. 10.1038/nprot.2006.478.CrossRefPubMed
24.
go back to reference Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F: Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 1999, 76: 725-734. 10.1016/S0006-3495(99)77239-5.PubMedCentralCrossRefPubMed Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F: Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 1999, 76: 725-734. 10.1016/S0006-3495(99)77239-5.PubMedCentralCrossRefPubMed
25.
go back to reference Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003, 160: 189-200. 10.1083/jcb.200211046.PubMedCentralCrossRefPubMed Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003, 160: 189-200. 10.1083/jcb.200211046.PubMedCentralCrossRefPubMed
26.
go back to reference De Vos KJ, Sheetz MP: Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol. 2007, 80: 627-682.CrossRefPubMed De Vos KJ, Sheetz MP: Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol. 2007, 80: 627-682.CrossRefPubMed
27.
go back to reference Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J: Presenilins are essential for regulating neurotransmitter release. Nature. 2009, 460: 632-636. 10.1038/nature08177.PubMedCentralCrossRefPubMed Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J: Presenilins are essential for regulating neurotransmitter release. Nature. 2009, 460: 632-636. 10.1038/nature08177.PubMedCentralCrossRefPubMed
28.
go back to reference Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL: Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 2008, 4: e1000061-10.1371/journal.pgen.1000061.PubMedCentralCrossRefPubMed Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL: Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 2008, 4: e1000061-10.1371/journal.pgen.1000061.PubMedCentralCrossRefPubMed
29.
go back to reference Ichas F, Mazat JP: From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998, 1366: 33-50. 10.1016/S0005-2728(98)00119-4.CrossRefPubMed Ichas F, Mazat JP: From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998, 1366: 33-50. 10.1016/S0005-2728(98)00119-4.CrossRefPubMed
30.
go back to reference Petronilli V, Miotto G, Canton M, Colonna R, Bernardi P, Di Lisa F: Imaging the mitochondrial permeability transition pore in intact cells. Biofactors. 1998, 8: 263-272. 10.1002/biof.5520080314.CrossRefPubMed Petronilli V, Miotto G, Canton M, Colonna R, Bernardi P, Di Lisa F: Imaging the mitochondrial permeability transition pore in intact cells. Biofactors. 1998, 8: 263-272. 10.1002/biof.5520080314.CrossRefPubMed
31.
go back to reference Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F: Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem. 1999, 264: 687-701.PubMed Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F: Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem. 1999, 264: 687-701.PubMed
32.
go back to reference Huser J, Rechenmacher CE, Blatter LA: Imaging the permeability pore transition in single mitochondria. Biophys J. 1998, 74: 2129-2137. 10.1016/S0006-3495(98)77920-2.PubMedCentralCrossRefPubMed Huser J, Rechenmacher CE, Blatter LA: Imaging the permeability pore transition in single mitochondria. Biophys J. 1998, 74: 2129-2137. 10.1016/S0006-3495(98)77920-2.PubMedCentralCrossRefPubMed
33.
go back to reference Gillessen T, Grasshoff C, Szinicz L: Mitochondrial permeability transition can be directly monitored in living neurons. Biomed Pharmacother. 2002, 56: 186-193. 10.1016/S0753-3322(02)00184-1.CrossRefPubMed Gillessen T, Grasshoff C, Szinicz L: Mitochondrial permeability transition can be directly monitored in living neurons. Biomed Pharmacother. 2002, 56: 186-193. 10.1016/S0753-3322(02)00184-1.CrossRefPubMed
34.
go back to reference Halestrap AP, Davidson AM: Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990, 268: 153-160.PubMedCentralCrossRefPubMed Halestrap AP, Davidson AM: Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990, 268: 153-160.PubMedCentralCrossRefPubMed
35.
go back to reference Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL: Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991, 66: 807-815. 10.1016/0092-8674(91)90124-H.CrossRefPubMed Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL: Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991, 66: 807-815. 10.1016/0092-8674(91)90124-H.CrossRefPubMed
36.
go back to reference Henderson PJ, Lardy HA: Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970, 245: 1319-1326.PubMed Henderson PJ, Lardy HA: Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970, 245: 1319-1326.PubMed
37.
go back to reference Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T: Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci. 1998, 18: 5151-5159.PubMed Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T: Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci. 1998, 18: 5151-5159.PubMed
38.
go back to reference Yorimitsu M, Muranaka S, Sato EF, Fujita H, Abe K, Yasuda T, Inoue M, Utsumi K: Role of alpha-tocopherol in the regulation of mitochondrial permeability transition. Physiol Chem Phys Med NMR. 2004, 36: 95-107.PubMed Yorimitsu M, Muranaka S, Sato EF, Fujita H, Abe K, Yasuda T, Inoue M, Utsumi K: Role of alpha-tocopherol in the regulation of mitochondrial permeability transition. Physiol Chem Phys Med NMR. 2004, 36: 95-107.PubMed
39.
go back to reference Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA: Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005, 312: 509-516.CrossRefPubMed Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA: Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005, 312: 509-516.CrossRefPubMed
40.
go back to reference Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ: The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008, 105: 1638-1643. 10.1073/pnas.0709336105.PubMedCentralCrossRefPubMed Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ: The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008, 105: 1638-1643. 10.1073/pnas.0709336105.PubMedCentralCrossRefPubMed
41.
go back to reference Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A. 2008, 105: 7070-7075. 10.1073/pnas.0711845105.PubMedCentralCrossRefPubMed Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A. 2008, 105: 7070-7075. 10.1073/pnas.0711845105.PubMedCentralCrossRefPubMed
42.
go back to reference Sandebring A, Thomas KJ, Beilina A, van der Brug M, Cleland MM, Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H, Cedazo-Minguez A, Cookson MR: Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE. 2009, 4: e5701-10.1371/journal.pone.0005701.PubMedCentralCrossRefPubMed Sandebring A, Thomas KJ, Beilina A, van der Brug M, Cleland MM, Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H, Cedazo-Minguez A, Cookson MR: Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE. 2009, 4: e5701-10.1371/journal.pone.0005701.PubMedCentralCrossRefPubMed
43.
go back to reference Odagiri K, Katoh H, Kawashima H, Tanaka T, Ohtani H, Saotome M, Urushida T, Satoh H, Hayashi H: Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J Mol Cell Cardiol. 2009, 46: 989-997. 10.1016/j.yjmcc.2008.12.022.CrossRefPubMed Odagiri K, Katoh H, Kawashima H, Tanaka T, Ohtani H, Saotome M, Urushida T, Satoh H, Hayashi H: Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J Mol Cell Cardiol. 2009, 46: 989-997. 10.1016/j.yjmcc.2008.12.022.CrossRefPubMed
44.
go back to reference Shim JH, Yoon SH, Kim KH, Han JY, Ha JY, Hyun DH, Paek SH, Kang UJ, Zhuang X, Son JH: The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells. Mitochondrion. 2011, 11: 707-715. 10.1016/j.mito.2011.05.013.CrossRefPubMed Shim JH, Yoon SH, Kim KH, Han JY, Ha JY, Hyun DH, Paek SH, Kang UJ, Zhuang X, Son JH: The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells. Mitochondrion. 2011, 11: 707-715. 10.1016/j.mito.2011.05.013.CrossRefPubMed
45.
go back to reference Fontaine E, Eriksson O, Ichas F, Bernardi P: Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem. 1998, 273: 12662-12668.PubMed Fontaine E, Eriksson O, Ichas F, Bernardi P: Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem. 1998, 273: 12662-12668.PubMed
46.
go back to reference Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C, Detaille D, Leverve X, Fontaine E: Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J Biol Chem. 2009, 284: 15117-15125. 10.1074/jbc.M900926200.PubMedCentralCrossRefPubMed Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C, Detaille D, Leverve X, Fontaine E: Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J Biol Chem. 2009, 284: 15117-15125. 10.1074/jbc.M900926200.PubMedCentralCrossRefPubMed
47.
go back to reference Moreira PI, Santos MS, Moreno A, Rego AC, Oliveira C: Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res. 2002, 69: 257-267. 10.1002/jnr.10282.CrossRefPubMed Moreira PI, Santos MS, Moreno A, Rego AC, Oliveira C: Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res. 2002, 69: 257-267. 10.1002/jnr.10282.CrossRefPubMed
48.
go back to reference Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN: Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol. 2007, 42: 150-158. 10.1016/j.yjmcc.2006.09.013.PubMedCentralCrossRefPubMed Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN: Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol. 2007, 42: 150-158. 10.1016/j.yjmcc.2006.09.013.PubMedCentralCrossRefPubMed
49.
go back to reference Liu W, Vives-Bauza C, Acin-Perez R, Yamamoto A, Tan Y, Li Y, Magrane J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, Li C: PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease. PLoS One. 2009, 4: e4597-10.1371/journal.pone.0004597.PubMedCentralCrossRefPubMed Liu W, Vives-Bauza C, Acin-Perez R, Yamamoto A, Tan Y, Li Y, Magrane J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, Li C: PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease. PLoS One. 2009, 4: e4597-10.1371/journal.pone.0004597.PubMedCentralCrossRefPubMed
50.
go back to reference Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJ, Willems PH, Baekelandt V: Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci. 2011, 124: 1115-1125. 10.1242/jcs.078303.CrossRefPubMed Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJ, Willems PH, Baekelandt V: Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci. 2011, 124: 1115-1125. 10.1242/jcs.078303.CrossRefPubMed
51.
go back to reference Maj MC, Tkachyova I, Patel P, Addis JB, Mackay N, Levandovskiy V, Lee J, Lang AE, Cameron JM, Robinson BH: Oxidative stress alters the regulatory control of p66Shc and Akt in PINK1 deficient cells. Biochem Biophys Res Commun. 2010, 399: 331-335. 10.1016/j.bbrc.2010.07.033.CrossRefPubMed Maj MC, Tkachyova I, Patel P, Addis JB, Mackay N, Levandovskiy V, Lee J, Lang AE, Cameron JM, Robinson BH: Oxidative stress alters the regulatory control of p66Shc and Akt in PINK1 deficient cells. Biochem Biophys Res Commun. 2010, 399: 331-335. 10.1016/j.bbrc.2010.07.033.CrossRefPubMed
52.
go back to reference Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997, 89: 1145-1153. 10.1016/S0092-8674(00)80301-3.CrossRefPubMed Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997, 89: 1145-1153. 10.1016/S0092-8674(00)80301-3.CrossRefPubMed
53.
go back to reference Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 2009, 284: 20796-20803. 10.1074/jbc.M109.025353.PubMedCentralCrossRefPubMed Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 2009, 284: 20796-20803. 10.1074/jbc.M109.025353.PubMedCentralCrossRefPubMed
54.
go back to reference Vergun O, Reynolds IJ: Distinct characteristics of Ca(2+)-induced depolarization of isolated brain and liver mitochondria. Biochim Biophys Acta. 2005, 1709: 127-137. 10.1016/j.bbabio.2005.07.006.CrossRefPubMed Vergun O, Reynolds IJ: Distinct characteristics of Ca(2+)-induced depolarization of isolated brain and liver mitochondria. Biochim Biophys Acta. 2005, 1709: 127-137. 10.1016/j.bbabio.2005.07.006.CrossRefPubMed
55.
go back to reference Cox DA, Conforti L, Sperelakis N, Matlib MA: Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol. 1993, 21: 595-599. 10.1097/00005344-199304000-00013.CrossRefPubMed Cox DA, Conforti L, Sperelakis N, Matlib MA: Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol. 1993, 21: 595-599. 10.1097/00005344-199304000-00013.CrossRefPubMed
56.
go back to reference Huang X, Zhai D, Huang Y: Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Mol Cell Biochem. 2000, 213: 29-35. 10.1023/A:1007138818124.CrossRefPubMed Huang X, Zhai D, Huang Y: Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Mol Cell Biochem. 2000, 213: 29-35. 10.1023/A:1007138818124.CrossRefPubMed
57.
go back to reference Schapira AH: Mitochondrial pathology in Parkinson's disease. Mt Sinai J Med. 2011, 78: 872-881. 10.1002/msj.20303.CrossRefPubMed Schapira AH: Mitochondrial pathology in Parkinson's disease. Mt Sinai J Med. 2011, 78: 872-881. 10.1002/msj.20303.CrossRefPubMed
58.
go back to reference Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004, 279: 18614-18622. 10.1074/jbc.M401135200.CrossRefPubMed Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J: Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004, 279: 18614-18622. 10.1074/jbc.M401135200.CrossRefPubMed
59.
go back to reference Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A: Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem. 2005, 280: 34025-34032. 10.1074/jbc.M505143200.CrossRefPubMed Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A: Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem. 2005, 280: 34025-34032. 10.1074/jbc.M505143200.CrossRefPubMed
Metadata
Title
Regulation of mitochondrial permeability transition pore by PINK1
Authors
Clement A Gautier
Emilie Giaime
Erica Caballero
Lucía Núñez
Zhiyin Song
David Chan
Carlos Villalobos
Jie Shen
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2012
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-22

Other articles of this Issue 1/2012

Molecular Neurodegeneration 1/2012 Go to the issue