Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2011

Open Access 01-12-2011 | Research article

Transgenic neuronal overexpression reveals that stringently regulated p23 expression is critical for coordinated movement in mice

Authors: Ping Gong, Jelita Roseman, Celia G Fernandez, Kulandaivelu S Vetrivel, Vytautas P Bindokas, Lois A Zitzow, Satyabrata Kar, Angèle T Parent, Gopal Thinakaran

Published in: Molecular Neurodegeneration | Issue 1/2011

Login to get access

Abstract

Background

p23 belongs to the highly conserved p24 family of type I transmembrane proteins, which participate in the bidirectional protein transport between the endoplasmic reticulum and Golgi apparatus. Mammalian p23 has been shown to interact with γ-secretase complex, and modulate secretory trafficking as well as intramembranous processing of amyloid precursor protein in cultured cells. Negative modulation of β-amyloid production by p23 in cultured cell lines suggested that elevation of p23 expression in neurons might mitigate cerebral amyloid burden.

Results

We generated several lines of transgenic mice expressing human p23 in neurons under the control of Thy-1.2 promoter. We found that even a 50% increase in p23 levels in the central nervous system of mice causes post-natal growth retardation, severe neurological problems characterized by tremors, seizure, ataxia, and uncoordinated movements, and premature death. The severity of the phenotype closely correlated with the level of p23 overexpression in multiple transgenic lines. While the number and general morphology of neurons in Hup23 mice appeared to be normal throughout the brain, abnormal non-Golgi p23 localization was observed in a subset of neurons with high transgene expression in brainstem. Moreover, detailed immunofluorescence analysis revealed marked proliferation of astrocytes, activation of microglia, and thinning of myelinated bundles in brainstem of Hup23 mice.

Conclusions

These results demonstrate that proper level of p23 expression is critical for neuronal function, and perturbing p23 function by overexpression initiates a cascade of cellular reactions in brainstem that leads to severe motor deficits and other neurological problems, which culminate in premature death. The neurological phenotype observed in Hup23 mice highlights significant adverse effects associated with manipulating neuronal expression of p23, a previously described negative modulator of γ-secretase activity and β-amyloid production. Moreover, our report has broader relevance to molecular mechanisms in several neurodegenerative diseases as it highlights the inherent vulnerability of the early secretory pathway mechanisms that ensure proteostasis in neurons.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T: gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol. 1998, 140: 751-765. 10.1083/jcb.140.4.751.PubMedPubMedCentralCrossRef Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T: gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol. 1998, 140: 751-765. 10.1083/jcb.140.4.751.PubMedPubMedCentralCrossRef
2.
go back to reference Strating JR, Martens GJ: The p24 family and selective transport processes at the ER-Golgi interface. Biol Cell. 2009, 101: 495-509. 10.1042/BC20080233.PubMedCrossRef Strating JR, Martens GJ: The p24 family and selective transport processes at the ER-Golgi interface. Biol Cell. 2009, 101: 495-509. 10.1042/BC20080233.PubMedCrossRef
3.
go back to reference Nickel W, Sohn K, Bunning C, Wieland FT: p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc Natl Acad Sci USA. 1997, 94: 11393-11398. 10.1073/pnas.94.21.11393.PubMedPubMedCentralCrossRef Nickel W, Sohn K, Bunning C, Wieland FT: p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc Natl Acad Sci USA. 1997, 94: 11393-11398. 10.1073/pnas.94.21.11393.PubMedPubMedCentralCrossRef
4.
go back to reference Rojo M, Pepperkok R, Emery G, Kellner R, Stang E, Parton RG, Gruenberg J: Involvement of the transmembrane protein p23 in biosynthetic protein transport. J Cell Biol. 1997, 139: 1119-1135. 10.1083/jcb.139.5.1119.PubMedPubMedCentralCrossRef Rojo M, Pepperkok R, Emery G, Kellner R, Stang E, Parton RG, Gruenberg J: Involvement of the transmembrane protein p23 in biosynthetic protein transport. J Cell Biol. 1997, 139: 1119-1135. 10.1083/jcb.139.5.1119.PubMedPubMedCentralCrossRef
5.
go back to reference Gommel D, Orci L, Emig EM, Hannah MJ, Ravazzola M, Nickel W, Helms JB, Wieland FT, Sohn K: p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett. 1999, 447: 179-185. 10.1016/S0014-5793(99)00246-X.PubMedCrossRef Gommel D, Orci L, Emig EM, Hannah MJ, Ravazzola M, Nickel W, Helms JB, Wieland FT, Sohn K: p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett. 1999, 447: 179-185. 10.1016/S0014-5793(99)00246-X.PubMedCrossRef
6.
go back to reference Rojo M, Emery G, Marjomaki V, McDowall AW, Parton RG, Gruenberg J: The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci. 2000, 113 (Pt 6): 1043-1057.PubMed Rojo M, Emery G, Marjomaki V, McDowall AW, Parton RG, Gruenberg J: The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci. 2000, 113 (Pt 6): 1043-1057.PubMed
7.
go back to reference Bonnon C, Wendeler MW, Paccaud JP, Hauri HP: Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J Cell Sci. 2010, 123: 1705-1715. 10.1242/jcs.062950.PubMedCrossRef Bonnon C, Wendeler MW, Paccaud JP, Hauri HP: Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J Cell Sci. 2010, 123: 1705-1715. 10.1242/jcs.062950.PubMedCrossRef
8.
go back to reference Denzel A, Otto F, Girod A, Pepperkok R, Watson R, Rosewell I, Bergeron JJ, Solari RC, Owen MJ: The p24 family member p23 is required for early embryonic development. Curr Biol. 2000, 10: 55-58. 10.1016/S0960-9822(99)00266-3.PubMedCrossRef Denzel A, Otto F, Girod A, Pepperkok R, Watson R, Rosewell I, Bergeron JJ, Solari RC, Owen MJ: The p24 family member p23 is required for early embryonic development. Curr Biol. 2000, 10: 55-58. 10.1016/S0960-9822(99)00266-3.PubMedCrossRef
9.
go back to reference Strating JR, Hafmans TG, Martens GJ: COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis. Int J Biochem Cell Biol. 2009, 41: 1619-1627. 10.1016/j.biocel.2009.02.010.PubMedCrossRef Strating JR, Hafmans TG, Martens GJ: COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis. Int J Biochem Cell Biol. 2009, 41: 1619-1627. 10.1016/j.biocel.2009.02.010.PubMedCrossRef
10.
go back to reference Blum R, Pfeiffer F, Feick P, Nastainczyk W, Kohler B, Schafer KH, Schulz I: Intracellular localization and in vivo trafficking of p24A and p23. J Cell Sci. 1999, 112 (Pt 4): 537-548.PubMed Blum R, Pfeiffer F, Feick P, Nastainczyk W, Kohler B, Schafer KH, Schulz I: Intracellular localization and in vivo trafficking of p24A and p23. J Cell Sci. 1999, 112 (Pt 4): 537-548.PubMed
11.
go back to reference Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N, Glista M, Rogaeva E, Wakutani Y, Pardossi-Piquard R, Ruan X, Tandon A, Checler F, Marambaud P, Hansen K, Westaway D, St George-Hyslop P, Fraser P: TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature. 2006, 440: 1208-1212. 10.1038/nature04667.PubMedCrossRef Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N, Glista M, Rogaeva E, Wakutani Y, Pardossi-Piquard R, Ruan X, Tandon A, Checler F, Marambaud P, Hansen K, Westaway D, St George-Hyslop P, Fraser P: TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature. 2006, 440: 1208-1212. 10.1038/nature04667.PubMedCrossRef
12.
go back to reference Iwatsubo T: The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol. 2004, 14: 379-383. 10.1016/j.conb.2004.05.010.PubMedCrossRef Iwatsubo T: The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol. 2004, 14: 379-383. 10.1016/j.conb.2004.05.010.PubMedCrossRef
13.
14.
go back to reference Vetrivel KS, Kodam A, Gong P, Chen Y, Parent AT, Kar S, Thinakaran G: Localization and regional distribution of p23/TMP21 in the brain. Neurobiol Dis. 2008, 32: 37-49. 10.1016/j.nbd.2008.06.012.PubMedPubMedCentralCrossRef Vetrivel KS, Kodam A, Gong P, Chen Y, Parent AT, Kar S, Thinakaran G: Localization and regional distribution of p23/TMP21 in the brain. Neurobiol Dis. 2008, 32: 37-49. 10.1016/j.nbd.2008.06.012.PubMedPubMedCentralCrossRef
15.
go back to reference Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P: Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell. 1995, 83: 269-278. 10.1016/0092-8674(95)90168-X.PubMedCrossRef Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P: Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell. 1995, 83: 269-278. 10.1016/0092-8674(95)90168-X.PubMedCrossRef
16.
go back to reference Caroni P: Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods. 1997, 71: 3-9. 10.1016/S0165-0270(96)00121-5.PubMedCrossRef Caroni P: Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods. 1997, 71: 3-9. 10.1016/S0165-0270(96)00121-5.PubMedCrossRef
17.
go back to reference Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000, 28: 41-51. 10.1016/S0896-6273(00)00084-2.PubMedCrossRef Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000, 28: 41-51. 10.1016/S0896-6273(00)00084-2.PubMedCrossRef
18.
go back to reference Clarke KA, Still J: Gait analysis in the mouse. Physiol Behav. 1999, 66: 723-729. 10.1016/S0031-9384(98)00343-6.PubMedCrossRef Clarke KA, Still J: Gait analysis in the mouse. Physiol Behav. 1999, 66: 723-729. 10.1016/S0031-9384(98)00343-6.PubMedCrossRef
19.
go back to reference Liguz-Lecznar M, Skangiel-Kramska J: Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars). 2007, 67: 207-218. Liguz-Lecznar M, Skangiel-Kramska J: Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars). 2007, 67: 207-218.
20.
go back to reference Fremeau RT, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH: Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science. 2004, 304: 1815-1819. 10.1126/science.1097468.PubMedCrossRef Fremeau RT, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH: Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science. 2004, 304: 1815-1819. 10.1126/science.1097468.PubMedCrossRef
21.
go back to reference Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S: Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging. 2007, 28: 568-578. 10.1016/j.neurobiolaging.2006.02.010.PubMedPubMedCentralCrossRef Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S: Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging. 2007, 28: 568-578. 10.1016/j.neurobiolaging.2006.02.010.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Streit WJ: Microglial senescence: does the brain's immune system have an expiration date?. Trends Neurosci. 2006, 29: 506-510. 10.1016/j.tins.2006.07.001.PubMedCrossRef Streit WJ: Microglial senescence: does the brain's immune system have an expiration date?. Trends Neurosci. 2006, 29: 506-510. 10.1016/j.tins.2006.07.001.PubMedCrossRef
24.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318. 10.1016/0166-2236(96)10049-7.PubMedCrossRef Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19: 312-318. 10.1016/0166-2236(96)10049-7.PubMedCrossRef
25.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005, 308: 1314-1318. 10.1126/science.1110647.PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005, 308: 1314-1318. 10.1126/science.1110647.PubMedCrossRef
26.
go back to reference Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE: Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol. 1992, 140: 345-356.PubMedPubMedCentral Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE: Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol. 1992, 140: 345-356.PubMedPubMedCentral
27.
go back to reference Wen C, Greenwald I: p24 proteins and quality control of LIN-12 and GLP-1 trafficking in Caenorhabditis elegans. J Cell Biol. 1999, 145: 1165-1175. 10.1083/jcb.145.6.1165.PubMedPubMedCentralCrossRef Wen C, Greenwald I: p24 proteins and quality control of LIN-12 and GLP-1 trafficking in Caenorhabditis elegans. J Cell Biol. 1999, 145: 1165-1175. 10.1083/jcb.145.6.1165.PubMedPubMedCentralCrossRef
29.
go back to reference Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC: Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 2004, 24: 1365-1377. 10.1128/MCB.24.3.1365-1377.2004.PubMedPubMedCentralCrossRef Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC: Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 2004, 24: 1365-1377. 10.1128/MCB.24.3.1365-1377.2004.PubMedPubMedCentralCrossRef
30.
go back to reference Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D: Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000, 6: 1099-1108. 10.1016/S1097-2765(00)00108-8.PubMedCrossRef Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D: Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000, 6: 1099-1108. 10.1016/S1097-2765(00)00108-8.PubMedCrossRef
31.
go back to reference Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K: ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct. 2007, 32: 41-50. 10.1247/csf.07001.PubMedCrossRef Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K: ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct. 2007, 32: 41-50. 10.1247/csf.07001.PubMedCrossRef
32.
go back to reference Lindholm P, Peranen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, Timmusk T, Saarma M: MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci. 2008, 39: 356-371. 10.1016/j.mcn.2008.07.016.PubMedCrossRef Lindholm P, Peranen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, Timmusk T, Saarma M: MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci. 2008, 39: 356-371. 10.1016/j.mcn.2008.07.016.PubMedCrossRef
33.
go back to reference Yu YQ, Liu LC, Wang FC, Liang Y, Cha DQ, Zhang JJ, Shen YJ, Wang HP, Fang S, Shen YX: Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab. 2010, 30: 79-91. 10.1038/jcbfm.2009.181.PubMedPubMedCentralCrossRef Yu YQ, Liu LC, Wang FC, Liang Y, Cha DQ, Zhang JJ, Shen YJ, Wang HP, Fang S, Shen YX: Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab. 2010, 30: 79-91. 10.1038/jcbfm.2009.181.PubMedPubMedCentralCrossRef
34.
go back to reference Fullekrug J, Suganuma T, Tang BL, Hong W, Storrie B, Nilsson T: Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol Biol Cell. 1999, 10: 1939-1955.PubMedPubMedCentralCrossRef Fullekrug J, Suganuma T, Tang BL, Hong W, Storrie B, Nilsson T: Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol Biol Cell. 1999, 10: 1939-1955.PubMedPubMedCentralCrossRef
35.
go back to reference Jenne N, Frey K, Brugger B, Wieland FT: Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J Biol Chem. 2002, 277: 46504-46511. 10.1074/jbc.M206989200.PubMedCrossRef Jenne N, Frey K, Brugger B, Wieland FT: Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J Biol Chem. 2002, 277: 46504-46511. 10.1074/jbc.M206989200.PubMedCrossRef
36.
go back to reference Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell. 1999, 10: 1923-1938.PubMedPubMedCentralCrossRef Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell. 1999, 10: 1923-1938.PubMedPubMedCentralCrossRef
37.
go back to reference Vetrivel KS, Gong P, Bowen JW, Cheng H, Chen Y, Carter M, Nguyen PD, Placanica L, Wieland FT, Li YM, Kounnas MZ, Thinakaran G: Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism. Mol Neurodegener. 2007, 2: 4-10.1186/1750-1326-2-4.PubMedPubMedCentralCrossRef Vetrivel KS, Gong P, Bowen JW, Cheng H, Chen Y, Carter M, Nguyen PD, Placanica L, Wieland FT, Li YM, Kounnas MZ, Thinakaran G: Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism. Mol Neurodegener. 2007, 2: 4-10.1186/1750-1326-2-4.PubMedPubMedCentralCrossRef
38.
go back to reference Takida S, Maeda Y, Kinoshita T: Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J. 2008, 409: 555-562. 10.1042/BJ20070234.PubMedCrossRef Takida S, Maeda Y, Kinoshita T: Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J. 2008, 409: 555-562. 10.1042/BJ20070234.PubMedCrossRef
39.
go back to reference Strating JR, Bouw G, Hafmans TG, Martens GJ: p24 Proteins from the same subfamily are functionally nonredundant. Biochimie. 2011, 93: 528-532. 10.1016/j.biochi.2010.11.007.PubMedCrossRef Strating JR, Bouw G, Hafmans TG, Martens GJ: p24 Proteins from the same subfamily are functionally nonredundant. Biochimie. 2011, 93: 528-532. 10.1016/j.biochi.2010.11.007.PubMedCrossRef
40.
go back to reference Jerome-Majewska LA, Achkar T, Luo L, Lupu F, Lacy E: The trafficking protein Tmed2/p24beta(1) is required for morphogenesis of the mouse embryo and placenta. Dev Biol. 2010, 341: 154-166. 10.1016/j.ydbio.2010.02.019.PubMedPubMedCentralCrossRef Jerome-Majewska LA, Achkar T, Luo L, Lupu F, Lacy E: The trafficking protein Tmed2/p24beta(1) is required for morphogenesis of the mouse embryo and placenta. Dev Biol. 2010, 341: 154-166. 10.1016/j.ydbio.2010.02.019.PubMedPubMedCentralCrossRef
41.
go back to reference Matus S, Glimcher LH, Hetz C: Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol. 2011, 23: 239-252. 10.1016/j.ceb.2011.01.003.PubMedCrossRef Matus S, Glimcher LH, Hetz C: Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol. 2011, 23: 239-252. 10.1016/j.ceb.2011.01.003.PubMedCrossRef
43.
go back to reference Meckler X, Roseman J, Das P, Cheng H, Pei S, Keat M, Kassarjian B, Golde TE, Parent AT, Thinakaran G: Reduced Alzheimer's disease ss-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin. J Neurosci. 2010, 30: 16160-16169. 10.1523/JNEUROSCI.4436-10.2010.PubMedPubMedCentralCrossRef Meckler X, Roseman J, Das P, Cheng H, Pei S, Keat M, Kassarjian B, Golde TE, Parent AT, Thinakaran G: Reduced Alzheimer's disease ss-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin. J Neurosci. 2010, 30: 16160-16169. 10.1523/JNEUROSCI.4436-10.2010.PubMedPubMedCentralCrossRef
44.
go back to reference Gong P, Vetrivel KS, Nguyen PD, Meckler X, Cheng H, Kounnas MZ, Wagner SL, Parent AT, Thinakaran G: Mutation analysis of the presenilin 1 N-terminal domain reveals a broad spectrum of gamma-secretase activity toward amyloid precursor protein and other substrates. J Biol Chem. 2010, 285: 38042-38052. 10.1074/jbc.M110.132613.PubMedPubMedCentralCrossRef Gong P, Vetrivel KS, Nguyen PD, Meckler X, Cheng H, Kounnas MZ, Wagner SL, Parent AT, Thinakaran G: Mutation analysis of the presenilin 1 N-terminal domain reveals a broad spectrum of gamma-secretase activity toward amyloid precursor protein and other substrates. J Biol Chem. 2010, 285: 38042-38052. 10.1074/jbc.M110.132613.PubMedPubMedCentralCrossRef
46.
go back to reference Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS: Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 1996, 17: 181-190. 10.1016/S0896-6273(00)80291-3.PubMedCrossRef Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS: Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 1996, 17: 181-190. 10.1016/S0896-6273(00)80291-3.PubMedCrossRef
47.
go back to reference Wong ML, Medrano JF: Real-time PCR for mRNA quantitation. Biotechniques. 2005, 39: 75-85. 10.2144/05391RV01.PubMedCrossRef Wong ML, Medrano JF: Real-time PCR for mRNA quantitation. Biotechniques. 2005, 39: 75-85. 10.2144/05391RV01.PubMedCrossRef
Metadata
Title
Transgenic neuronal overexpression reveals that stringently regulated p23 expression is critical for coordinated movement in mice
Authors
Ping Gong
Jelita Roseman
Celia G Fernandez
Kulandaivelu S Vetrivel
Vytautas P Bindokas
Lois A Zitzow
Satyabrata Kar
Angèle T Parent
Gopal Thinakaran
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2011
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-6-87

Other articles of this Issue 1/2011

Molecular Neurodegeneration 1/2011 Go to the issue