Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2011

Open Access 01-12-2011 | Research article

Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

Authors: Xi Chen, Jun Wu, Svetlana Lvovskaya, Emily Herndon, Charlene Supnet, Ilya Bezprozvanny

Published in: Molecular Neurodegeneration | Issue 1/2011

Login to get access

Abstract

Background

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model.

Results

The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates.

Conclusions

Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as dantrolene should be considered as potential therapeutics for the treatment of HD and other polyQ-expansion disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP: Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 1985, 44 (6): 559-577. 10.1097/00005072-198511000-00003.PubMedCrossRef Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP: Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 1985, 44 (6): 559-577. 10.1097/00005072-198511000-00003.PubMedCrossRef
2.
go back to reference Bauer PO, Nukina N: The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem. 2009, 110 (6): 1737-1765. 10.1111/j.1471-4159.2009.06302.x.PubMedCrossRef Bauer PO, Nukina N: The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem. 2009, 110 (6): 1737-1765. 10.1111/j.1471-4159.2009.06302.x.PubMedCrossRef
3.
go back to reference Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I: Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1. Neuron. 2003, 39 (2): 227-239. 10.1016/S0896-6273(03)00366-0.PubMedPubMedCentralCrossRef Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I: Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1. Neuron. 2003, 39 (2): 227-239. 10.1016/S0896-6273(03)00366-0.PubMedPubMedCentralCrossRef
4.
go back to reference Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA. 2005, 102 (7): 2602-2607. 10.1073/pnas.0409402102.PubMedPubMedCentralCrossRef Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA. 2005, 102 (7): 2602-2607. 10.1073/pnas.0409402102.PubMedPubMedCentralCrossRef
5.
go back to reference Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I: Neuroprotective effects of inositol 1, 4, 5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci. 2009, 29 (5): 1257-1266. 10.1523/JNEUROSCI.4411-08.2009.PubMedPubMedCentralCrossRef Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I: Neuroprotective effects of inositol 1, 4, 5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci. 2009, 29 (5): 1257-1266. 10.1523/JNEUROSCI.4411-08.2009.PubMedPubMedCentralCrossRef
6.
go back to reference Wu J, Shih HP, Vigont V, Hrdlicka L, Diggins L, Singh C, Mahoney M, Chesworth R, Shapiro G, Zimina O, et al: Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem Biol. 2011, 18 (6): 777-793. 10.1016/j.chembiol.2011.04.012.PubMedPubMedCentralCrossRef Wu J, Shih HP, Vigont V, Hrdlicka L, Diggins L, Singh C, Mahoney M, Chesworth R, Shapiro G, Zimina O, et al: Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem Biol. 2011, 18 (6): 777-793. 10.1016/j.chembiol.2011.04.012.PubMedPubMedCentralCrossRef
7.
go back to reference Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I: Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiol Dis. 2008, 31 (1): 80-88. 10.1016/j.nbd.2008.03.010.PubMedPubMedCentralCrossRef Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I: Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiol Dis. 2008, 31 (1): 80-88. 10.1016/j.nbd.2008.03.010.PubMedPubMedCentralCrossRef
8.
go back to reference Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA: Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron. 2002, 33 (6): 849-860. 10.1016/S0896-6273(02)00615-3.PubMedCrossRef Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA: Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron. 2002, 33 (6): 849-860. 10.1016/S0896-6273(02)00615-3.PubMedCrossRef
9.
go back to reference Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA: Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci. 2004, 25 (3): 469-479. 10.1016/j.mcn.2003.11.014.PubMedCrossRef Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA: Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci. 2004, 25 (3): 469-479. 10.1016/j.mcn.2003.11.014.PubMedCrossRef
10.
go back to reference Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA: Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis. 2006, 21 (2): 392-403. 10.1016/j.nbd.2005.08.001.PubMedCrossRef Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA: Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis. 2006, 21 (2): 392-403. 10.1016/j.nbd.2005.08.001.PubMedCrossRef
11.
go back to reference Milnerwood AJ, Raymond LA: Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci. 2010, 33 (11): 513-523. 10.1016/j.tins.2010.08.002.PubMedCrossRef Milnerwood AJ, Raymond LA: Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci. 2010, 33 (11): 513-523. 10.1016/j.tins.2010.08.002.PubMedCrossRef
12.
go back to reference Okamoto SI, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, et al: Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009 Okamoto SI, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, et al: Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009
13.
go back to reference Bezprozvanny I, Hayden MR: Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun. 2004, 322 (4): 1310-1317. 10.1016/j.bbrc.2004.08.035.PubMedCrossRef Bezprozvanny I, Hayden MR: Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun. 2004, 322 (4): 1310-1317. 10.1016/j.bbrc.2004.08.035.PubMedCrossRef
15.
go back to reference Miller BR, Bezprozvanny I: Corticostriatal circuit dysfunction in Huntington's disease: intersection of glutamate, dopamine, and calcium. Future Neurology. 2010, 5: 735-756. 10.2217/fnl.10.41.PubMedPubMedCentralCrossRef Miller BR, Bezprozvanny I: Corticostriatal circuit dysfunction in Huntington's disease: intersection of glutamate, dopamine, and calcium. Future Neurology. 2010, 5: 735-756. 10.2217/fnl.10.41.PubMedPubMedCentralCrossRef
16.
go back to reference Bezprozvanny I: Role of Inositol 1, 4, 5-Trishosphate Receptors in Pathogenesis of Huntington's Disease and Spinocerebellar Ataxias. Neurochem Res. 2011 Bezprozvanny I: Role of Inositol 1, 4, 5-Trishosphate Receptors in Pathogenesis of Huntington's Disease and Spinocerebellar Ataxias. Neurochem Res. 2011
17.
go back to reference Berridge MJ: The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002, 32 (5-6): 235-249. 10.1016/S0143416002001823.PubMedCrossRef Berridge MJ: The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002, 32 (5-6): 235-249. 10.1016/S0143416002001823.PubMedCrossRef
18.
go back to reference Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009, 29 (29): 9148-9162. 10.1523/JNEUROSCI.0660-09.2009.PubMedPubMedCentralCrossRef Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009, 29 (29): 9148-9162. 10.1523/JNEUROSCI.0660-09.2009.PubMedPubMedCentralCrossRef
19.
go back to reference Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008, 28 (48): 12713-12724. 10.1523/JNEUROSCI.3909-08.2008.PubMedPubMedCentralCrossRef Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008, 28 (48): 12713-12724. 10.1523/JNEUROSCI.3909-08.2008.PubMedPubMedCentralCrossRef
20.
go back to reference Wu J, Tang T, Bezprozvanny I: Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Neurosci Lett. 2006, 407 (3): 219-223. 10.1016/j.neulet.2006.08.036.PubMedCrossRef Wu J, Tang T, Bezprozvanny I: Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Neurosci Lett. 2006, 407 (3): 219-223. 10.1016/j.neulet.2006.08.036.PubMedCrossRef
21.
22.
go back to reference Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I: Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res. 2009, 87 (8): 1904-1912. 10.1002/jnr.22017.PubMedPubMedCentralCrossRef Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I: Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res. 2009, 87 (8): 1904-1912. 10.1002/jnr.22017.PubMedPubMedCentralCrossRef
23.
go back to reference Frandsen A, Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem. 1991, 56 (3): 1075-1078. 10.1111/j.1471-4159.1991.tb02031.x.PubMedCrossRef Frandsen A, Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem. 1991, 56 (3): 1075-1078. 10.1111/j.1471-4159.1991.tb02031.x.PubMedCrossRef
24.
go back to reference Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH: Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res. 1995, 40 (5): 641-646. 10.1002/jnr.490400509.PubMedCrossRef Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH: Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res. 1995, 40 (5): 641-646. 10.1002/jnr.490400509.PubMedCrossRef
25.
go back to reference Mody I, MacDonald JF: NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci. 1995, 16 (10): 356-359. 10.1016/S0165-6147(00)89070-7.PubMedCrossRef Mody I, MacDonald JF: NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci. 1995, 16 (10): 356-359. 10.1016/S0165-6147(00)89070-7.PubMedCrossRef
26.
go back to reference Wei H, Perry DC: Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem. 1996, 67 (6): 2390-2398.PubMedCrossRef Wei H, Perry DC: Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem. 1996, 67 (6): 2390-2398.PubMedCrossRef
27.
go back to reference Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP: Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med. 1999, 5 (1): 101-106. 10.1038/4789.PubMedCrossRef Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP: Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med. 1999, 5 (1): 101-106. 10.1038/4789.PubMedCrossRef
28.
go back to reference Niebauer M, Gruenthal M: Neuroprotective effects of early vs. late administration of dantrolene in experimental status epilepticus. Neuropharmacology. 1999, 38 (9): 1343-1348. 10.1016/S0028-3908(99)00059-3.PubMedCrossRef Niebauer M, Gruenthal M: Neuroprotective effects of early vs. late administration of dantrolene in experimental status epilepticus. Neuropharmacology. 1999, 38 (9): 1343-1348. 10.1016/S0028-3908(99)00059-3.PubMedCrossRef
29.
go back to reference Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, et al: Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem. 2001, 276 (15): 11539-11544. 10.1074/jbc.M010977200.PubMedCrossRef Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, et al: Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem. 2001, 276 (15): 11539-11544. 10.1074/jbc.M010977200.PubMedCrossRef
30.
go back to reference Popescu BO, Oprica M, Sajin M, Stanciu CL, Bajenaru O, Predescu A, Vidulescu C, Popescu LM: Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. J Cell Mol Med. 2002, 6 (4): 555-569. 10.1111/j.1582-4934.2002.tb00454.x.PubMedCrossRef Popescu BO, Oprica M, Sajin M, Stanciu CL, Bajenaru O, Predescu A, Vidulescu C, Popescu LM: Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. J Cell Mol Med. 2002, 6 (4): 555-569. 10.1111/j.1582-4934.2002.tb00454.x.PubMedCrossRef
31.
go back to reference Makarewicz D, Zieminska E, Lazarewicz JW: Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int. 2003, 43 (4-5): 273-278. 10.1016/S0197-0186(03)00012-3.PubMedCrossRef Makarewicz D, Zieminska E, Lazarewicz JW: Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int. 2003, 43 (4-5): 273-278. 10.1016/S0197-0186(03)00012-3.PubMedCrossRef
32.
go back to reference Tang TS, Chen X, Liu J, Bezprozvanny I: Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci. 2007, 27 (30): 7899-7910. 10.1523/JNEUROSCI.1396-07.2007.PubMedPubMedCentralCrossRef Tang TS, Chen X, Liu J, Bezprozvanny I: Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci. 2007, 27 (30): 7899-7910. 10.1523/JNEUROSCI.1396-07.2007.PubMedPubMedCentralCrossRef
33.
go back to reference Wang H, Chen X, Li Y, Tang TS, Bezprozvanny I: Tetrabenazine is neuroprotective in Huntington's disease mice. Mol Neurodegener. 2010, 5: 18-10.1186/1750-1326-5-18.PubMedPubMedCentralCrossRef Wang H, Chen X, Li Y, Tang TS, Bezprozvanny I: Tetrabenazine is neuroprotective in Huntington's disease mice. Mol Neurodegener. 2010, 5: 18-10.1186/1750-1326-5-18.PubMedPubMedCentralCrossRef
34.
go back to reference Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, et al: Expanded Polyglutamine-Binding Peptoid as a Novel Therapeutic Agent for Treatment of Huntington's Disease. Chem Biol. 2011, 18 (9): 1113-1125. 10.1016/j.chembiol.2011.06.010.PubMedPubMedCentralCrossRef Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, et al: Expanded Polyglutamine-Binding Peptoid as a Novel Therapeutic Agent for Treatment of Huntington's Disease. Chem Biol. 2011, 18 (9): 1113-1125. 10.1016/j.chembiol.2011.06.010.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang H, Das S, Li QZ, Dragatsis I, Repa J, Zeitlin S, Hajnoczky G, Bezprozvanny I: Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neurosci. 2008, 9 (1): 38-10.1186/1471-2202-9-38.PubMedPubMedCentralCrossRef Zhang H, Das S, Li QZ, Dragatsis I, Repa J, Zeitlin S, Hajnoczky G, Bezprozvanny I: Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neurosci. 2008, 9 (1): 38-10.1186/1471-2202-9-38.PubMedPubMedCentralCrossRef
36.
go back to reference Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J: Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem. 2006, 281 (44): 33477-33486. 10.1074/jbc.M602306200.PubMedCrossRef Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J: Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem. 2006, 281 (44): 33477-33486. 10.1074/jbc.M602306200.PubMedCrossRef
37.
go back to reference Muehlschlegel S, Sims JR: Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit. Neurocrit Care. 2009, 10 (1): 103-115. 10.1007/s12028-008-9133-4.PubMedPubMedCentralCrossRef Muehlschlegel S, Sims JR: Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit. Neurocrit Care. 2009, 10 (1): 103-115. 10.1007/s12028-008-9133-4.PubMedPubMedCentralCrossRef
38.
go back to reference Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H: Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology. 2002, 96 (3): 705-710. 10.1097/00000542-200203000-00029.PubMedCrossRef Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H: Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology. 2002, 96 (3): 705-710. 10.1097/00000542-200203000-00029.PubMedCrossRef
39.
go back to reference Tasker RC, Sahota SK, Cotter FE, Williams SR: Early postischemic dantrolene-induced amelioration of poly(ADP-ribose) polymerase-related bioenergetic failure in neonatal rat brain slices. J Cereb Blood Flow Metab. 1998, 18 (12): 1346-1356.PubMedCrossRef Tasker RC, Sahota SK, Cotter FE, Williams SR: Early postischemic dantrolene-induced amelioration of poly(ADP-ribose) polymerase-related bioenergetic failure in neonatal rat brain slices. J Cereb Blood Flow Metab. 1998, 18 (12): 1346-1356.PubMedCrossRef
40.
go back to reference Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM: Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem. 2000, 75 (1): 81-90.PubMedCrossRef Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM: Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem. 2000, 75 (1): 81-90.PubMedCrossRef
41.
go back to reference Kim BC, Kim HT, Mamura M, Ambudkar IS, Choi KS, Kim SJ: Tumor necrosis factor induces apoptosis in hepatoma cells by increasing Ca(2+) release from the endoplasmic reticulum and suppressing Bcl-2 expression. J Biol Chem. 2002, 277 (35): 31381-31389. 10.1074/jbc.M203465200.PubMedCrossRef Kim BC, Kim HT, Mamura M, Ambudkar IS, Choi KS, Kim SJ: Tumor necrosis factor induces apoptosis in hepatoma cells by increasing Ca(2+) release from the endoplasmic reticulum and suppressing Bcl-2 expression. J Biol Chem. 2002, 277 (35): 31381-31389. 10.1074/jbc.M203465200.PubMedCrossRef
42.
go back to reference Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP: Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci. 1997, 17 (11): 4212-4222.PubMed Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP: Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci. 1997, 17 (11): 4212-4222.PubMed
43.
go back to reference Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M: The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem. 1999, 274 (12): 7975-7981. 10.1074/jbc.274.12.7975.PubMedCrossRef Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M: The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem. 1999, 274 (12): 7975-7981. 10.1074/jbc.274.12.7975.PubMedCrossRef
44.
go back to reference Rothstein JD, Kuncl RW: Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J Neurochem. 1995, 65 (2): 643-651.PubMedCrossRef Rothstein JD, Kuncl RW: Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J Neurochem. 1995, 65 (2): 643-651.PubMedCrossRef
45.
go back to reference Inan S, Wei H: The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg. 2010, 111 (6): 1400-1410. 10.1213/ANE.0b013e3181f7181c.PubMedCrossRef Inan S, Wei H: The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg. 2010, 111 (6): 1400-1410. 10.1213/ANE.0b013e3181f7181c.PubMedCrossRef
46.
go back to reference Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I: Role of presenilins in neuronal calcium homeostasis. J Neurosci. 2010, 30 (25): 8566-8580. 10.1523/JNEUROSCI.1554-10.2010.PubMedPubMedCentralCrossRef Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I: Role of presenilins in neuronal calcium homeostasis. J Neurosci. 2010, 30 (25): 8566-8580. 10.1523/JNEUROSCI.1554-10.2010.PubMedPubMedCentralCrossRef
47.
go back to reference Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F: Dantrolene--a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004, 59 (4): 364-373. 10.1111/j.1365-2044.2004.03658.x.PubMedCrossRef Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F: Dantrolene--a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004, 59 (4): 364-373. 10.1111/j.1365-2044.2004.03658.x.PubMedCrossRef
48.
go back to reference Bezprozvanny I, Klockgether T: Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future. 2010, 34 (12): 991-999.CrossRef Bezprozvanny I, Klockgether T: Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future. 2010, 34 (12): 991-999.CrossRef
49.
go back to reference Kasumu A, Bezprozvanny I: Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias. Cerebellum. 2010 Kasumu A, Bezprozvanny I: Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias. Cerebellum. 2010
50.
go back to reference Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, et al: Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003, 12 (13): 1555-1567. 10.1093/hmg/ddg169.PubMedCrossRef Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, et al: Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003, 12 (13): 1555-1567. 10.1093/hmg/ddg169.PubMedCrossRef
Metadata
Title
Dantrolene is neuroprotective in Huntington's disease transgenic mouse model
Authors
Xi Chen
Jun Wu
Svetlana Lvovskaya
Emily Herndon
Charlene Supnet
Ilya Bezprozvanny
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2011
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-6-81

Other articles of this Issue 1/2011

Molecular Neurodegeneration 1/2011 Go to the issue