Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2010

Open Access 01-12-2010 | Review

Effects of low power laser irradiation on bone healing in animals: a meta-analysis

Authors: Siamak Bashardoust Tajali, Joy C MacDermid, Pamela Houghton, Ruby Grewal

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2010

Login to get access

Abstract

Purpose

The meta-analysis was performed to identify animal research defining the effects of low power laser irradiation on biomechanical indicators of bone regeneration and the impact of dosage.

Methods

We searched five electronic databases (MEDLINE, EMBASE, PubMed, CINAHL, and Cochrane Database of Randomised Clinical Trials) for studies in the area of laser and bone healing published from 1966 to October 2008. Included studies had to investigate fracture healing in any animal model, using any type of low power laser irradiation, and use at least one quantitative biomechanical measures of bone strength. There were 880 abstracts related to the laser irradiation and bone issues (healing, surgery and assessment). Five studies met our inclusion criteria and were critically appraised by two raters independently using a structured tool designed for rating the quality of animal research studies. After full text review, two articles were deemed ineligible for meta-analysis because of the type of injury method and biomechanical variables used, leaving three studies for meta-analysis. Maximum bone tolerance force before the point of fracture during the biomechanical test, 4 weeks after bone deficiency was our main biomechanical bone properties for the Meta analysis.

Results

Studies indicate that low power laser irradiation can enhance biomechanical properties of bone during fracture healing in animal models. Maximum bone tolerance was statistically improved following low level laser irradiation (average random effect size 0.726, 95% CI 0.08 - 1.37, p 0.028). While conclusions are limited by the low number of studies, there is concordance across limited evidence that laser improves the strength of bone tissue during the healing process in animal models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paterson D: Treatment of nonunion with a constant direct current: a totally implantable system. Orthopedic Clinics of North America. 1984, 15 (1): 47-59.PubMed Paterson D: Treatment of nonunion with a constant direct current: a totally implantable system. Orthopedic Clinics of North America. 1984, 15 (1): 47-59.PubMed
2.
go back to reference Childs SG: Stimulators of Bone Healing. Biologic and Biomechanical. Orthopaedic Nursing. 2003, 22 (6): 421-428. 10.1097/00006416-200311000-00010.CrossRefPubMed Childs SG: Stimulators of Bone Healing. Biologic and Biomechanical. Orthopaedic Nursing. 2003, 22 (6): 421-428. 10.1097/00006416-200311000-00010.CrossRefPubMed
3.
go back to reference Buckwalter JA, Einhorn TA, Bolander ME, Cruess RL: Healing of the musculoskeletal tissues. Rockwood and Green's Fracture in Adults. Edited by: Rockwood CA, Green DP, Bucholz RW, Heckman JD. 1996, New York: Lippincott - Raven, 1: 261-304. 4 Buckwalter JA, Einhorn TA, Bolander ME, Cruess RL: Healing of the musculoskeletal tissues. Rockwood and Green's Fracture in Adults. Edited by: Rockwood CA, Green DP, Bucholz RW, Heckman JD. 1996, New York: Lippincott - Raven, 1: 261-304. 4
4.
go back to reference Saleh M: The principles of non-union management. Orthofix External Fixation in Trauma and Orthopaedics. Edited by: De Bastiani G, Apley AG, Goldberg A. 2000, London: Springer, 523-536. Saleh M: The principles of non-union management. Orthofix External Fixation in Trauma and Orthopaedics. Edited by: De Bastiani G, Apley AG, Goldberg A. 2000, London: Springer, 523-536.
5.
go back to reference Baxter D: Low intensity laser therapy. Electrotherapy, Evidence Based Practice. Edited by: Kitchen S, Bazin S. 2002, Edinburg: Churchill Livingstone, 171-189. 11 Baxter D: Low intensity laser therapy. Electrotherapy, Evidence Based Practice. Edited by: Kitchen S, Bazin S. 2002, Edinburg: Churchill Livingstone, 171-189. 11
6.
go back to reference Brighton CT, Robert MH: Early histologic and ultrastructural changes in microvessels of periosteal callus. Orthopaedic Trauma. 1997, 11 (4): 244-253. 10.1097/00005131-199705000-00002.CrossRef Brighton CT, Robert MH: Early histologic and ultrastructural changes in microvessels of periosteal callus. Orthopaedic Trauma. 1997, 11 (4): 244-253. 10.1097/00005131-199705000-00002.CrossRef
7.
go back to reference Belkin M, Schwartz M: New biological phenomena associated with laser radiation. Health Physics. 1989, 56: 687-690. 10.1097/00004032-198905000-00014.CrossRefPubMed Belkin M, Schwartz M: New biological phenomena associated with laser radiation. Health Physics. 1989, 56: 687-690. 10.1097/00004032-198905000-00014.CrossRefPubMed
8.
go back to reference Karu T: Photobiology of low power laser effects. Health Physics. 1989, 56: 691-704. 10.1097/00004032-198905000-00015.CrossRefPubMed Karu T: Photobiology of low power laser effects. Health Physics. 1989, 56: 691-704. 10.1097/00004032-198905000-00015.CrossRefPubMed
9.
go back to reference Baxter D: Low intensity laser therapy. Clayton's Electrotherapy. Edited by: Kitchen S, Bazin S. 1996, London: WB Saunders, 197-216. 10 Baxter D: Low intensity laser therapy. Clayton's Electrotherapy. Edited by: Kitchen S, Bazin S. 1996, London: WB Saunders, 197-216. 10
10.
go back to reference Singh S, Saha S: Electrical properties of bone. Clinical Orthopedic and Related Research. 1984, 186: 249-271. Singh S, Saha S: Electrical properties of bone. Clinical Orthopedic and Related Research. 1984, 186: 249-271.
11.
go back to reference Friedenberg ZB, Harlow MC, Brighton CT: Healing of nonunion of the medial malleolus by means of direct current: a case report. Trauma Injury Infection and Critical Care. 1971, 11 (10): 883-5.CrossRef Friedenberg ZB, Harlow MC, Brighton CT: Healing of nonunion of the medial malleolus by means of direct current: a case report. Trauma Injury Infection and Critical Care. 1971, 11 (10): 883-5.CrossRef
12.
go back to reference Cundy PJ, Paterson DC: A ten year review of treatment of delayed union and non-union with an implanted bone growth stimulation. Clinical Orthopedic and Related Research. 1990, 259: 216-222. Cundy PJ, Paterson DC: A ten year review of treatment of delayed union and non-union with an implanted bone growth stimulation. Clinical Orthopedic and Related Research. 1990, 259: 216-222.
13.
go back to reference Gresh MR: Microcurrent electrical stimulation: Putting it in perspective. Clinical Management. 1987, 9 (4): 51-54. Gresh MR: Microcurrent electrical stimulation: Putting it in perspective. Clinical Management. 1987, 9 (4): 51-54.
14.
go back to reference Heckman JD, Rayaby JP, Mccabe J: Acceleration of tibial fracture healing by non-invasive low intensity pulsed ultrasound. Bone and Joint Surgery (Am). 1994, 46 (1): 26-34. Heckman JD, Rayaby JP, Mccabe J: Acceleration of tibial fracture healing by non-invasive low intensity pulsed ultrasound. Bone and Joint Surgery (Am). 1994, 46 (1): 26-34.
15.
go back to reference Basset CAL, Mitchell SN, Gaston SR: Treatment of united tibial diaphysed fractures with pulsing electromagnetic fields. Bone and Joint Surgery. 1981, 63 (4): 511-523. Basset CAL, Mitchell SN, Gaston SR: Treatment of united tibial diaphysed fractures with pulsing electromagnetic fields. Bone and Joint Surgery. 1981, 63 (4): 511-523.
16.
go back to reference Benazzo F, Mosconi M, Beccarisi : Use of capacitive coupled electric fields in stress fractures in athletes. Clinical Orthopaedics and Related Research. 1995, 310: 145-149.PubMed Benazzo F, Mosconi M, Beccarisi : Use of capacitive coupled electric fields in stress fractures in athletes. Clinical Orthopaedics and Related Research. 1995, 310: 145-149.PubMed
17.
go back to reference Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J: Control of connective tissue metabolism by lasers: recent developments and future prospects. American Academy of Dermatology. 1984, 11 (6): 1142-50. 10.1016/S0190-9622(84)80194-2.CrossRef Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J: Control of connective tissue metabolism by lasers: recent developments and future prospects. American Academy of Dermatology. 1984, 11 (6): 1142-50. 10.1016/S0190-9622(84)80194-2.CrossRef
18.
go back to reference Trelles MA, Mayayo E: Bone fracture consolidate faster with low power laser. Lasers Surgical Medicine. 1987, 7 (1): 36-45. 10.1002/lsm.1900070107.CrossRef Trelles MA, Mayayo E: Bone fracture consolidate faster with low power laser. Lasers Surgical Medicine. 1987, 7 (1): 36-45. 10.1002/lsm.1900070107.CrossRef
19.
go back to reference Yamada K: Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). The Journal of the Japanese Orthopedic Association. 1991, 65 (9): 101-114. Yamada K: Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). The Journal of the Japanese Orthopedic Association. 1991, 65 (9): 101-114.
20.
go back to reference Gordjestani M, Dermaut L, Thierens H: Infrared laser and bone metabolism: A pilot study. International Journal of Oral and Maxillofacial Surgery. 1994, 23 (1): 54-56. 10.1016/S0901-5027(05)80329-7.CrossRefPubMed Gordjestani M, Dermaut L, Thierens H: Infrared laser and bone metabolism: A pilot study. International Journal of Oral and Maxillofacial Surgery. 1994, 23 (1): 54-56. 10.1016/S0901-5027(05)80329-7.CrossRefPubMed
21.
go back to reference Tang XM, Chai BP: Effect of CO2 laser irradiation on experimental fracture healing: A transmission electron microscopic study. Lasers Surgical Medicine. 1986, 6 (3): 346-352. 10.1002/lsm.1900060309.CrossRef Tang XM, Chai BP: Effect of CO2 laser irradiation on experimental fracture healing: A transmission electron microscopic study. Lasers Surgical Medicine. 1986, 6 (3): 346-352. 10.1002/lsm.1900060309.CrossRef
22.
go back to reference Motomura K: Effects of various laser irradiation on callus formation after osteotomy. Nippon Reza Igakkai Shi (The Journal of Japan Society for Laser Medicine). 1984, 4 (1): 195-196.CrossRef Motomura K: Effects of various laser irradiation on callus formation after osteotomy. Nippon Reza Igakkai Shi (The Journal of Japan Society for Laser Medicine). 1984, 4 (1): 195-196.CrossRef
23.
go back to reference Nagasawa A, Kato K, Takaoka K: Experimental evaluation on bone repairing activation effect of lasers based on bone morphologic protein. Nippon Reza Igakkai Shi (The Journal of Japan Society for Laser Medicine). 1988, 9 (3): 165-168.CrossRef Nagasawa A, Kato K, Takaoka K: Experimental evaluation on bone repairing activation effect of lasers based on bone morphologic protein. Nippon Reza Igakkai Shi (The Journal of Japan Society for Laser Medicine). 1988, 9 (3): 165-168.CrossRef
24.
go back to reference Pourreau-Schneider N, Soudry M, Remusat M, Franquin JC, Martin PM: Modifications of growth dynamics and ultrastructure after helium-neon laser treatment of human gingival fibroblasts. Quintessence International. 1989, 20 (12): 887-93.PubMed Pourreau-Schneider N, Soudry M, Remusat M, Franquin JC, Martin PM: Modifications of growth dynamics and ultrastructure after helium-neon laser treatment of human gingival fibroblasts. Quintessence International. 1989, 20 (12): 887-93.PubMed
25.
go back to reference David R, Nissan M, Cohen I, Soudry M: Effect of low power He-Ne laser on fracture healing in rats. Lasers in Surgery and Medicine. 1996, 19: 458-464. 10.1002/(SICI)1096-9101(1996)19:4<458::AID-LSM12>3.0.CO;2-Z.CrossRefPubMed David R, Nissan M, Cohen I, Soudry M: Effect of low power He-Ne laser on fracture healing in rats. Lasers in Surgery and Medicine. 1996, 19: 458-464. 10.1002/(SICI)1096-9101(1996)19:4<458::AID-LSM12>3.0.CO;2-Z.CrossRefPubMed
26.
go back to reference Tajali SB, Ebrahimi E, Kazemi S, Bayat M, Azari A, Azordegan F, Kamali M, Hoseinian M: Effects of He-Ne laser irradiation on osteosynthesis. Osteosynthesis and Trauma Care. 2003, 11: S17-S20. 10.1055/s-2003-42289.CrossRef Tajali SB, Ebrahimi E, Kazemi S, Bayat M, Azari A, Azordegan F, Kamali M, Hoseinian M: Effects of He-Ne laser irradiation on osteosynthesis. Osteosynthesis and Trauma Care. 2003, 11: S17-S20. 10.1055/s-2003-42289.CrossRef
27.
go back to reference Akai M, Usuba M, Maeshima T, Shirasaki Y, Yasuoka S: Laser's effect on b one and cartilage change induced by joint immobilization: An experiment with animal model. Lasers in Surgery and Medicine. 1997, 21: 480-484. 10.1002/(SICI)1096-9101(1997)21:5<480::AID-LSM10>3.0.CO;2-D.CrossRefPubMed Akai M, Usuba M, Maeshima T, Shirasaki Y, Yasuoka S: Laser's effect on b one and cartilage change induced by joint immobilization: An experiment with animal model. Lasers in Surgery and Medicine. 1997, 21: 480-484. 10.1002/(SICI)1096-9101(1997)21:5<480::AID-LSM10>3.0.CO;2-D.CrossRefPubMed
28.
go back to reference Teng J, Liu YP, Zhang Y, Zhou ZL: Effect of He-Ne laser versus low level Co2 laser irradiation on accelerating fracture healing. Chinese Journal of Clinical Rehabilitation. 2006, 10 (37): 179-181. Teng J, Liu YP, Zhang Y, Zhou ZL: Effect of He-Ne laser versus low level Co2 laser irradiation on accelerating fracture healing. Chinese Journal of Clinical Rehabilitation. 2006, 10 (37): 179-181.
29.
go back to reference Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S: Effect of low power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers in Surgery and Medicine. 1998, 22: 97-102. 10.1002/(SICI)1096-9101(1998)22:2<97::AID-LSM5>3.0.CO;2-R.CrossRefPubMed Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S: Effect of low power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers in Surgery and Medicine. 1998, 22: 97-102. 10.1002/(SICI)1096-9101(1998)22:2<97::AID-LSM5>3.0.CO;2-R.CrossRefPubMed
30.
go back to reference Jadad AR, Moore RA, Carrol D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuary HJ: Assessing the quality of reports of randomized clinical trials: is blinding necessary?. Control Clinical Trials. 1996, 17: 1-12. 10.1016/0197-2456(95)00134-4.CrossRef Jadad AR, Moore RA, Carrol D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuary HJ: Assessing the quality of reports of randomized clinical trials: is blinding necessary?. Control Clinical Trials. 1996, 17: 1-12. 10.1016/0197-2456(95)00134-4.CrossRef
31.
go back to reference Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M: Reliability of PEDro scale for rating quality of randomized controlled trials. Physical Therapy. 2003, 83: 713-721.PubMed Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M: Reliability of PEDro scale for rating quality of randomized controlled trials. Physical Therapy. 2003, 83: 713-721.PubMed
32.
go back to reference Burke SM, Carron AV, Eys MA, Ntoumanis N, Estabrooks P: Group versus individual approach? A meta-analysis of the effectiveness of interventions to promote physical activity. Sports and Exercise Psychology Review. 2006, 2 (1): 13-26. Burke SM, Carron AV, Eys MA, Ntoumanis N, Estabrooks P: Group versus individual approach? A meta-analysis of the effectiveness of interventions to promote physical activity. Sports and Exercise Psychology Review. 2006, 2 (1): 13-26.
33.
go back to reference Petitti DB: Meta_Analysis, Decision Analysis, and Cost-Effectiveness Analysis. Methods for Quantitative Synthesis in Medicine. 2000, New York: Oxford University Press, 2 Petitti DB: Meta_Analysis, Decision Analysis, and Cost-Effectiveness Analysis. Methods for Quantitative Synthesis in Medicine. 2000, New York: Oxford University Press, 2
34.
go back to reference Whitehead A: Meta-Analysis of Controlled Trials. 2002, Hoboken: John Wiley and Sons, full_text.CrossRef Whitehead A: Meta-Analysis of Controlled Trials. 2002, Hoboken: John Wiley and Sons, full_text.CrossRef
35.
go back to reference Cohen J: Statistical power analyses for the behavioral sciences. 1988, New Jersey: Lawrence Erlbaum Associates, 2 Cohen J: Statistical power analyses for the behavioral sciences. 1988, New Jersey: Lawrence Erlbaum Associates, 2
36.
go back to reference Hedges LV, Olkin I: Statistical methods for meta-analysis. 1985, Toronto: Academic press Hedges LV, Olkin I: Statistical methods for meta-analysis. 1985, Toronto: Academic press
37.
go back to reference Comprehensive Meta Analysis (CMA) [computer program]: Version 2. 1985, Englewood: The US National Institutes of Health Comprehensive Meta Analysis (CMA) [computer program]: Version 2. 1985, Englewood: The US National Institutes of Health
38.
go back to reference Prentice WE: Therapeutic Modalities in Sport Medicine. 1994, St. Louis: Mosby, 3 Prentice WE: Therapeutic Modalities in Sport Medicine. 1994, St. Louis: Mosby, 3
39.
go back to reference Mester E, Mester AF, Mester A: Biomedical effects of laser application. Lasers in surgery and medicine. 1985, 5: 31-39. 10.1002/lsm.1900050105.CrossRefPubMed Mester E, Mester AF, Mester A: Biomedical effects of laser application. Lasers in surgery and medicine. 1985, 5: 31-39. 10.1002/lsm.1900050105.CrossRefPubMed
40.
go back to reference Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G: Effects of varying intensities of laser energy on articular cartilage: A preliminary study. Lasers in Surgery and Medicine. 1985, 5: 577-588. 10.1002/lsm.1900050606.CrossRefPubMed Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G: Effects of varying intensities of laser energy on articular cartilage: A preliminary study. Lasers in Surgery and Medicine. 1985, 5: 577-588. 10.1002/lsm.1900050606.CrossRefPubMed
41.
go back to reference Bhandari M, Guyatt GM, Tong D, Adili A, Shaughnessy SG: Reamed versus nonreamed intramedullary nailing of lower extremity long bone fracture: a systematic overview and meta analysis. Orthopedic Trauma. 2000, 14: 2-9.CrossRef Bhandari M, Guyatt GM, Tong D, Adili A, Shaughnessy SG: Reamed versus nonreamed intramedullary nailing of lower extremity long bone fracture: a systematic overview and meta analysis. Orthopedic Trauma. 2000, 14: 2-9.CrossRef
42.
go back to reference Chapman MW: The effect of reamed and non reamed intramedullary nailing on fracture healing. Clinical Orthopedics. 1998, 355 (Suppl): S230-238. 10.1097/00003086-199810001-00023.CrossRef Chapman MW: The effect of reamed and non reamed intramedullary nailing on fracture healing. Clinical Orthopedics. 1998, 355 (Suppl): S230-238. 10.1097/00003086-199810001-00023.CrossRef
43.
go back to reference Cameron MH, Perez D, Otano Lata S: Electromagnetic Radiation. Physical Agents in Rehabilitation, From Research to Practice. Edited by: Cameron MH. 1999, Philadelphia: WB Saunders, 303-344. Cameron MH, Perez D, Otano Lata S: Electromagnetic Radiation. Physical Agents in Rehabilitation, From Research to Practice. Edited by: Cameron MH. 1999, Philadelphia: WB Saunders, 303-344.
44.
go back to reference Karu TI: Molecular mechanisms of the therapeutic effects low intensity laser radiation. Lasers Life Sciences. 1989, 2: 53-74. Karu TI: Molecular mechanisms of the therapeutic effects low intensity laser radiation. Lasers Life Sciences. 1989, 2: 53-74.
45.
go back to reference Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C: Macrophage responsiveness to light therapy. Lasers in Surgery and Medicine. 1989, 9: 497-505. 10.1002/lsm.1900090513.CrossRefPubMed Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C: Macrophage responsiveness to light therapy. Lasers in Surgery and Medicine. 1989, 9: 497-505. 10.1002/lsm.1900090513.CrossRefPubMed
46.
go back to reference Passarella S, Casamassima E, Quagliariello E, Caretto G, Jirillo E: Quantitative analysis of lymphocyte-Salmonella interaction and effects of lymphocyte irradiation by He-Ne laser. Biochemical and Biophysical Research Communications. 1985, 130: 546-552. 10.1016/0006-291X(85)90451-6.CrossRefPubMed Passarella S, Casamassima E, Quagliariello E, Caretto G, Jirillo E: Quantitative analysis of lymphocyte-Salmonella interaction and effects of lymphocyte irradiation by He-Ne laser. Biochemical and Biophysical Research Communications. 1985, 130: 546-552. 10.1016/0006-291X(85)90451-6.CrossRefPubMed
47.
go back to reference Day SM, Ostrum RF, Chao EYS: Bone injury, regeneration and repair. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. Edited by: Buckwalter JA, Einhorn TA, Simon SR. 2000, Rosemont (IL): American Academy of Orthopedic Surgeons, 371-399. 2 Day SM, Ostrum RF, Chao EYS: Bone injury, regeneration and repair. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. Edited by: Buckwalter JA, Einhorn TA, Simon SR. 2000, Rosemont (IL): American Academy of Orthopedic Surgeons, 371-399. 2
Metadata
Title
Effects of low power laser irradiation on bone healing in animals: a meta-analysis
Authors
Siamak Bashardoust Tajali
Joy C MacDermid
Pamela Houghton
Ruby Grewal
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2010
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/1749-799X-5-1

Other articles of this Issue 1/2010

Journal of Orthopaedic Surgery and Research 1/2010 Go to the issue