Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

Authors: Marie Claire Cantone, Mario Ciocca, Francesco Dionisi, Piero Fossati, Stefano Lorentini, Marco Krengli, Silvia Molinelli, Roberto Orecchia, Marco Schwarz, Ivan Veronese, Viviana Vitolo

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Background

A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient.

Methods

FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125.

Results

Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image reconstruction algorithms, (ii) further evaluation of treatment plan robustness and (iii) implementation of independent methods for dose calculation (such as Monte Carlo simulations) may represent novel solutions to increase patient safety.

Conclusions

FMEA is a useful tool for prospective evaluation of patient safety in proton beam radiotherapy. The application of this method to the treatment planning stage lead to identify strategies for risk mitigation in addition to the safety measures already adopted in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Veronese I, Cantone MC, Chiodini N, Coray A, Fasoli M, Lomax A, Mones E, Moretti F, Vedda A: Feasibility study for the use of cerium-doped silica fibres in proton therapy. Radiat Meas 2010, 45: 635-639. 10.1016/j.radmeas.2009.10.100CrossRef Veronese I, Cantone MC, Chiodini N, Coray A, Fasoli M, Lomax A, Mones E, Moretti F, Vedda A: Feasibility study for the use of cerium-doped silica fibres in proton therapy. Radiat Meas 2010, 45: 635-639. 10.1016/j.radmeas.2009.10.100CrossRef
2.
go back to reference Veronese I, Cantone MC, Catalano M, Chiodini N, Fasoli M, Mancosu P, Mones E, Moretti F, Scorsetti M, Vedda A: Study of the radioluminescene spectra of doped silica optical fibre dosimeters for stem effect removal. J Phys D: Appl Phys 2013, 46: 015101. 10.1088/0022-3727/46/1/015101CrossRef Veronese I, Cantone MC, Catalano M, Chiodini N, Fasoli M, Mancosu P, Mones E, Moretti F, Scorsetti M, Vedda A: Study of the radioluminescene spectra of doped silica optical fibre dosimeters for stem effect removal. J Phys D: Appl Phys 2013, 46: 015101. 10.1088/0022-3727/46/1/015101CrossRef
4.
go back to reference Mancosu P, Cozzi L, Fogliata A, Lattuada P, Reggiori G, Cantone MC, Navarria P, Scorsetti M: Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy. Med Phys 2010, 37: 4133-4137. 10.1118/1.3462560CrossRefPubMed Mancosu P, Cozzi L, Fogliata A, Lattuada P, Reggiori G, Cantone MC, Navarria P, Scorsetti M: Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy. Med Phys 2010, 37: 4133-4137. 10.1118/1.3462560CrossRefPubMed
5.
go back to reference Reggiori G, Mancosu P, Tozzi A, Cantone MC, Castiglioni S, Lattuada P, Lobefalo F, Cozzi L, Fogliata A, Navarria P, Scorsetti M: Cone beam CT pre- and post- daily treatment fot assessing geometrical and dosimetric intrafraction variability during radiotherapy of prostate cancer. J Appl Clin Med Phys 2011, 12: 141-152. Reggiori G, Mancosu P, Tozzi A, Cantone MC, Castiglioni S, Lattuada P, Lobefalo F, Cozzi L, Fogliata A, Navarria P, Scorsetti M: Cone beam CT pre- and post- daily treatment fot assessing geometrical and dosimetric intrafraction variability during radiotherapy of prostate cancer. J Appl Clin Med Phys 2011, 12: 141-152.
6.
go back to reference World Health Organization: Radiotherapy Risk Profile. Geneva: WHO/IER/PSP/2008.12; 2008. World Health Organization: Radiotherapy Risk Profile. Geneva: WHO/IER/PSP/2008.12; 2008.
7.
go back to reference International Atomic Energy Agency: Lessons learned from accidents in radiotherapy. Vienna: IAEA (Safety Reports Series 17); 2000. International Atomic Energy Agency: Lessons learned from accidents in radiotherapy. Vienna: IAEA (Safety Reports Series 17); 2000.
8.
go back to reference International Commission on Radiological Protection ICRP Publication 112, Annals of the ICRP 39 (4). In Preventing Accidental Exposures from New External Beam Radiation Therapy Technologies. Elsevier; 2009. International Commission on Radiological Protection ICRP Publication 112, Annals of the ICRP 39 (4). In Preventing Accidental Exposures from New External Beam Radiation Therapy Technologies. Elsevier; 2009.
9.
go back to reference Ford EC, Gaudette R, Myers L, Vanderver B, Engineer L, Zellars R, Song DY, Wong J, DeWeese TL: Evaluation of safety in radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol Biol Phys 2009, 74: 852-858. 10.1016/j.ijrobp.2008.10.038CrossRefPubMedPubMedCentral Ford EC, Gaudette R, Myers L, Vanderver B, Engineer L, Zellars R, Song DY, Wong J, DeWeese TL: Evaluation of safety in radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol Biol Phys 2009, 74: 852-858. 10.1016/j.ijrobp.2008.10.038CrossRefPubMedPubMedCentral
10.
go back to reference Ekaette EU, Lee RC, Cooke DL, Iftody S, Craighead P: Probabilistic fault tree analysis of a radiation treatment system. Risk Anal 2007, 27: 1395-1410. 10.1111/j.1539-6924.2007.00976.xCrossRefPubMed Ekaette EU, Lee RC, Cooke DL, Iftody S, Craighead P: Probabilistic fault tree analysis of a radiation treatment system. Risk Anal 2007, 27: 1395-1410. 10.1111/j.1539-6924.2007.00976.xCrossRefPubMed
11.
go back to reference Ciocca M, Cantone MC, Veronese I, Cattani F, Petroli G, Molinelli S, Vitolo V, Orecchia R: Application of failure mode and effect analysis to intraoperative radiation therapy using mobile electron linear accelerators. Int J Radiat Oncol Biol Phys 2012, 82: e305-e311. 10.1016/j.ijrobp.2011.05.010CrossRefPubMed Ciocca M, Cantone MC, Veronese I, Cattani F, Petroli G, Molinelli S, Vitolo V, Orecchia R: Application of failure mode and effect analysis to intraoperative radiation therapy using mobile electron linear accelerators. Int J Radiat Oncol Biol Phys 2012, 82: e305-e311. 10.1016/j.ijrobp.2011.05.010CrossRefPubMed
12.
go back to reference Perks JR, Stanic S, Stern RL, Henk B, Nelson MS, Harse Mathai M, Purdy J, Valicenti RK, Siefkin AD, Chen AM: Failure mode and effect analysis for delivery of lung stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2012, 83: 1324-1329. 10.1016/j.ijrobp.2011.09.019CrossRefPubMed Perks JR, Stanic S, Stern RL, Henk B, Nelson MS, Harse Mathai M, Purdy J, Valicenti RK, Siefkin AD, Chen AM: Failure mode and effect analysis for delivery of lung stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2012, 83: 1324-1329. 10.1016/j.ijrobp.2011.09.019CrossRefPubMed
13.
go back to reference Sawant A, Dieterich S, Svatos M, Keall P: Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems. Med Phys 2010, 37: 6466-6479. 10.1118/1.3517837CrossRefPubMedPubMedCentral Sawant A, Dieterich S, Svatos M, Keall P: Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems. Med Phys 2010, 37: 6466-6479. 10.1118/1.3517837CrossRefPubMedPubMedCentral
14.
go back to reference Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Medin PM, Mundt A, Mutic S, Palta JR, Thomadsen BR, Williamson JF, Yorke ED: A method for evaluating quality assurance needs in radiation therapy. Int J Radiat Oncol Biol Phys 2008,71(Suppl):S170-S173.CrossRefPubMed Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Medin PM, Mundt A, Mutic S, Palta JR, Thomadsen BR, Williamson JF, Yorke ED: A method for evaluating quality assurance needs in radiation therapy. Int J Radiat Oncol Biol Phys 2008,71(Suppl):S170-S173.CrossRefPubMed
16.
go back to reference Orecchia R, Fossati P, Rossi S: The national center for oncological hadron therapy: status of the project and future clinical use of the facility. Tumori 2009, 95: 169-176.PubMed Orecchia R, Fossati P, Rossi S: The national center for oncological hadron therapy: status of the project and future clinical use of the facility. Tumori 2009, 95: 169-176.PubMed
17.
go back to reference Giordanengo S, Donetti M, Garella MA, Marchetto F, Alampi G, Ansarinejad A, Monaco V, Mucchi M, Pecka IA, Peroni C, Sacchi R, Scalise M, Tomba C, Cirio R: Design and characterization of the beam monitor detectors of the Italian National Center of Oncological Hadron-therapy (CNAO). Nucl Instrum Meth A 2013, 698: 202-207.CrossRef Giordanengo S, Donetti M, Garella MA, Marchetto F, Alampi G, Ansarinejad A, Monaco V, Mucchi M, Pecka IA, Peroni C, Sacchi R, Scalise M, Tomba C, Cirio R: Design and characterization of the beam monitor detectors of the Italian National Center of Oncological Hadron-therapy (CNAO). Nucl Instrum Meth A 2013, 698: 202-207.CrossRef
18.
go back to reference Lomax A: Intensity modulation methods for proton radiotherapy. Phys Med Biol 1999, 44: 185-205. 10.1088/0031-9155/44/1/014CrossRefPubMed Lomax A: Intensity modulation methods for proton radiotherapy. Phys Med Biol 1999, 44: 185-205. 10.1088/0031-9155/44/1/014CrossRefPubMed
19.
go back to reference Bert C, Durante M: Motion in radiotherapy: particle therapy. Phys Med Biol 2011, 56: R113-R144. 10.1088/0031-9155/56/16/R01CrossRefPubMed Bert C, Durante M: Motion in radiotherapy: particle therapy. Phys Med Biol 2011, 56: R113-R144. 10.1088/0031-9155/56/16/R01CrossRefPubMed
20.
go back to reference Albertini F, Casiraghi M, Lorentini S, Rombi B, Lomax AJ: Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties. Phys Med Biol 2011, 56: 4415-4431. 10.1088/0031-9155/56/14/012CrossRefPubMed Albertini F, Casiraghi M, Lorentini S, Rombi B, Lomax AJ: Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties. Phys Med Biol 2011, 56: 4415-4431. 10.1088/0031-9155/56/14/012CrossRefPubMed
21.
go back to reference Unkelbach J, Bortfeld T, Martin BC, Soukup M: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys 2009, 36: 149-163. 10.1118/1.3021139CrossRefPubMedPubMedCentral Unkelbach J, Bortfeld T, Martin BC, Soukup M: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys 2009, 36: 149-163. 10.1118/1.3021139CrossRefPubMedPubMedCentral
22.
go back to reference Fredriksson A, Forsgren A, Hardemark B: Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys 2011, 38: 1672-1684. 10.1118/1.3556559CrossRefPubMed Fredriksson A, Forsgren A, Hardemark B: Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys 2011, 38: 1672-1684. 10.1118/1.3556559CrossRefPubMed
23.
go back to reference Paganetti H: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012, 57: R99-R117. 10.1088/0031-9155/57/11/R99CrossRefPubMedPubMedCentral Paganetti H: Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012, 57: R99-R117. 10.1088/0031-9155/57/11/R99CrossRefPubMedPubMedCentral
24.
go back to reference Pflugfelder D, Wilkens JJ, Oelfke U: Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2008, 53: 1689-1700. 10.1088/0031-9155/53/6/013CrossRefPubMed Pflugfelder D, Wilkens JJ, Oelfke U: Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2008, 53: 1689-1700. 10.1088/0031-9155/53/6/013CrossRefPubMed
25.
go back to reference Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D: Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol 2012, 57: 591-608. 10.1088/0031-9155/57/3/591CrossRefPubMedPubMedCentral Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D: Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol 2012, 57: 591-608. 10.1088/0031-9155/57/3/591CrossRefPubMedPubMedCentral
26.
go back to reference Albertini F, Hug EB, Lomax AJ: The influence of the optimization starting conditions in the robustness of intensity-modulated proton therapy plans. Phys Med Biol 2010, 55: 2863-2878. 10.1088/0031-9155/55/10/005CrossRefPubMed Albertini F, Hug EB, Lomax AJ: The influence of the optimization starting conditions in the robustness of intensity-modulated proton therapy plans. Phys Med Biol 2010, 55: 2863-2878. 10.1088/0031-9155/55/10/005CrossRefPubMed
27.
go back to reference Parodi K, Mairani A, Brons S, Hasch BG, Sommerer F, Naumann J, Jäkel O, Haberer T, Debus J: Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol 2012, 57: 3759-3784. 10.1088/0031-9155/57/12/3759CrossRefPubMed Parodi K, Mairani A, Brons S, Hasch BG, Sommerer F, Naumann J, Jäkel O, Haberer T, Debus J: Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol 2012, 57: 3759-3784. 10.1088/0031-9155/57/12/3759CrossRefPubMed
Metadata
Title
Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy
Authors
Marie Claire Cantone
Mario Ciocca
Francesco Dionisi
Piero Fossati
Stefano Lorentini
Marco Krengli
Silvia Molinelli
Roberto Orecchia
Marco Schwarz
Ivan Veronese
Viviana Vitolo
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-127

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue