Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

An in-silico comparison of proton beam and IMRT for postoperative radiotherapy in completely resected stage IIIA non-small cell lung cancer

Authors: Abigail T Berman, Boon-Keng Kevin Teo, Derek Dolney, Samuel Swisher-McClure, Kambiz Shahnazi, Stefan Both, Ramesh Rengan

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Introduction

Post-operative radiotherapy (PORT) for stage IIIA completely-resected non-small cell lung cancer (CR-NSCLC) has been shown to improve local control; however, it is unclear that this translates into a survival benefit. One explanation is that the detrimental effect of PORT on critical organs at risk (OARs) negates its benefit. This study reports an in-silico comparative analysis of passive scattering proton therapy (PSPT)- and intensity modulated proton therapy (IMPT) with intensity modulated photon beam radiotherapy (IMRT) PORT.

Methods

The computed tomography treatment planning scans of ten patients with pathologic stage IIIA CR-NSCLC treated with IMRT were used. IMRT, PSPT, and IMPT plans were generated and analyzed for dosimetric endpoints. The proton plans were constructed with two or three beams. All plans were optimized to deliver 50.4 Gy(RBE) in 1.8 Gy(RBE) fractions to the target volume.

Results

IMPT leads to statistically significant reductions in maximum spinal cord, mean lung dose, lung volumes treated to 5, 10, 20, and 30 Gy (V5, V10, V20, V30), mean heart dose, and heart volume treated to 40 Gy (V40), when compared with IMRT or PSPT. PSPT reduced lung V5 but increased lung V20, V30, and heart and esophagus V40.

Conclusions

IMPT demonstrates a large decrease in dose to all OARs. PSPT, while reducing the low-dose lung bath, increases the volume of lung receiving high dose. Reductions are seen in dosimetric parameters predictive of radiation pneumonitis and cardiac morbidity and mortality. This reduction may correlate with a decrease in dose-limiting toxicity and improve the therapeutic ratio.
Appendix
Available only for authorised users
Literature
1.
go back to reference The Lung Cancer Study Group: Effects of postoperative mediastinal radiation on completely resected stage II and stage III epidermoid cancer of the lung. N Engl J Med 1986,315(22):1377-1381.CrossRef The Lung Cancer Study Group: Effects of postoperative mediastinal radiation on completely resected stage II and stage III epidermoid cancer of the lung. N Engl J Med 1986,315(22):1377-1381.CrossRef
2.
go back to reference PORT Meta-analysis Trialists Group: Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet 1998,352(9124):257-263.CrossRef PORT Meta-analysis Trialists Group: Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet 1998,352(9124):257-263.CrossRef
3.
go back to reference Miles EF, Kelsey CR, Kirkpatrick JP, Marks LB: Estimating the magnitude and field-size dependence of radiotherapy-induced mortality and tumor control after postoperative radiotherapy for non-small-cell lung cancer: calculations from clinical trials. Int J Radiat Oncol Biol Phys 2007,68(4):1047-1052. 10.1016/j.ijrobp.2007.02.028CrossRefPubMed Miles EF, Kelsey CR, Kirkpatrick JP, Marks LB: Estimating the magnitude and field-size dependence of radiotherapy-induced mortality and tumor control after postoperative radiotherapy for non-small-cell lung cancer: calculations from clinical trials. Int J Radiat Oncol Biol Phys 2007,68(4):1047-1052. 10.1016/j.ijrobp.2007.02.028CrossRefPubMed
4.
go back to reference Lally BE, Zelterman D, Colasanto JM, et al.: Postoperative radiotherapy for stage II or III non-small-cell lung cancer using the surveillance, epidemiology, and end results database. J Clin Oncol 2006,24(19):2998-3006. 10.1200/JCO.2005.04.6110CrossRefPubMed Lally BE, Zelterman D, Colasanto JM, et al.: Postoperative radiotherapy for stage II or III non-small-cell lung cancer using the surveillance, epidemiology, and end results database. J Clin Oncol 2006,24(19):2998-3006. 10.1200/JCO.2005.04.6110CrossRefPubMed
5.
go back to reference Douillard JY, Rosell R, De Lena M, et al.: Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. Int J Radiat Oncol Biol Phys 2008,72(3):695-701. 10.1016/j.ijrobp.2008.01.044CrossRefPubMed Douillard JY, Rosell R, De Lena M, et al.: Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. Int J Radiat Oncol Biol Phys 2008,72(3):695-701. 10.1016/j.ijrobp.2008.01.044CrossRefPubMed
6.
go back to reference Jazieh AR, Bamefleh H, Demirkazik A, et al.: Modification and implementation of NCCN guidelines on non-small cell lung cancer in the Middle East and North Africa region. J Natl Compr Canc Netw 2010,8(Suppl 3):S16-S21.PubMed Jazieh AR, Bamefleh H, Demirkazik A, et al.: Modification and implementation of NCCN guidelines on non-small cell lung cancer in the Middle East and North Africa region. J Natl Compr Canc Netw 2010,8(Suppl 3):S16-S21.PubMed
7.
go back to reference Yom SS, Liao Z, Liu HH, et al.: Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2007,68(1):94-102. 10.1016/j.ijrobp.2006.12.031CrossRefPubMed Yom SS, Liao Z, Liu HH, et al.: Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2007,68(1):94-102. 10.1016/j.ijrobp.2006.12.031CrossRefPubMed
8.
go back to reference Muzik J, Soukup M, Alber M: Comparison of fixed-beam IMRT, helical tomotherapy, and IMPT for selected cases. Med Phys 2008,35(4):1580-1592. 10.1118/1.2890085CrossRefPubMed Muzik J, Soukup M, Alber M: Comparison of fixed-beam IMRT, helical tomotherapy, and IMPT for selected cases. Med Phys 2008,35(4):1580-1592. 10.1118/1.2890085CrossRefPubMed
9.
go back to reference Chapet O, Kong FM, Quint LE, et al.: CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 2005,63(1):170-178. 10.1016/j.ijrobp.2004.12.060CrossRefPubMed Chapet O, Kong FM, Quint LE, et al.: CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 2005,63(1):170-178. 10.1016/j.ijrobp.2004.12.060CrossRefPubMed
10.
go back to reference Moyers MF, Miller DW, Bush DA, Slater JD: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001,49(5):1429-1438. 10.1016/S0360-3016(00)01555-8CrossRefPubMed Moyers MF, Miller DW, Bush DA, Slater JD: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001,49(5):1429-1438. 10.1016/S0360-3016(00)01555-8CrossRefPubMed
11.
go back to reference A. Lomax EPaBSea: A 3D treatment planning for conformal proton therapy by spot scanning. Edited by: Faulkner BC K, Crellin A, Harrison RM. London: British Institute of Radiology; 1996. Quantitative imaging in oncology A. Lomax EPaBSea: A 3D treatment planning for conformal proton therapy by spot scanning. Edited by: Faulkner BC K, Crellin A, Harrison RM. London: British Institute of Radiology; 1996. Quantitative imaging in oncology
12.
go back to reference ICRU 78: Prescribing, Recording, and Reporting Proton-Beam Therapy. Journal of the ICRU 2007.,7(2): ICRU 78: Prescribing, Recording, and Reporting Proton-Beam Therapy. Journal of the ICRU 2007.,7(2):
13.
go back to reference Machtay M, Lee JH, Shrager JB, Kaiser LR, Glatstein E: Risk of death from intercurrent disease is not excessively increased by modern postoperative radiotherapy for high-risk resected non-small-cell lung carcinoma. J Clin Oncol 2001,19(19):3912-3917.PubMed Machtay M, Lee JH, Shrager JB, Kaiser LR, Glatstein E: Risk of death from intercurrent disease is not excessively increased by modern postoperative radiotherapy for high-risk resected non-small-cell lung carcinoma. J Clin Oncol 2001,19(19):3912-3917.PubMed
14.
go back to reference Bush DA: Proton radiation therapy for lung cancer: is there enough evidence? Oncology (Williston Park) 2010,24(11):1052-1057. Bush DA: Proton radiation therapy for lung cancer: is there enough evidence? Oncology (Williston Park) 2010,24(11):1052-1057.
15.
go back to reference Chang JY, Zhang X, Wang X, et al.: Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006,65(4):1087-1096. 10.1016/j.ijrobp.2006.01.052CrossRefPubMed Chang JY, Zhang X, Wang X, et al.: Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006,65(4):1087-1096. 10.1016/j.ijrobp.2006.01.052CrossRefPubMed
16.
go back to reference Zhang X, Li Y, Pan X, et al.: Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys 2010,77(2):357-366. 10.1016/j.ijrobp.2009.04.028CrossRefPubMedPubMedCentral Zhang X, Li Y, Pan X, et al.: Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys 2010,77(2):357-366. 10.1016/j.ijrobp.2009.04.028CrossRefPubMedPubMedCentral
17.
go back to reference Graham MV, Purdy JA, Emami B, et al.: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999,45(2):323-329. 10.1016/S0360-3016(99)00183-2CrossRefPubMed Graham MV, Purdy JA, Emami B, et al.: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999,45(2):323-329. 10.1016/S0360-3016(99)00183-2CrossRefPubMed
18.
go back to reference Jenkins P, Watts J: An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables. Int J Radiat Oncol Biol Phys 2011,80(4):1023-1029. 10.1016/j.ijrobp.2010.03.058CrossRefPubMed Jenkins P, Watts J: An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables. Int J Radiat Oncol Biol Phys 2011,80(4):1023-1029. 10.1016/j.ijrobp.2010.03.058CrossRefPubMed
19.
go back to reference Bradley JD, Hope A, El Naqa I, et al.: A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys 2007,69(4):985-992. 10.1016/j.ijrobp.2007.04.077CrossRefPubMedPubMedCentral Bradley JD, Hope A, El Naqa I, et al.: A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys 2007,69(4):985-992. 10.1016/j.ijrobp.2007.04.077CrossRefPubMedPubMedCentral
20.
go back to reference Yin M, Liao Z, Liu Z, et al.: Functional polymorphisms of base excision repair genes XRCC1 and APEX1 predict risk of radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 2011,81(3):e67-73. 10.1016/j.ijrobp.2010.11.079CrossRefPubMedPubMedCentral Yin M, Liao Z, Liu Z, et al.: Functional polymorphisms of base excision repair genes XRCC1 and APEX1 predict risk of radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 2011,81(3):e67-73. 10.1016/j.ijrobp.2010.11.079CrossRefPubMedPubMedCentral
21.
go back to reference Lally BE, Detterbeck FC, Geiger AM, et al.: The risk of death from heart disease in patients with nonsmall cell lung cancer who receive postoperative radiotherapy: analysis of the Surveillance, Epidemiology, and End Results database. Cancer 2007,110(4):911-917. 10.1002/cncr.22845CrossRefPubMed Lally BE, Detterbeck FC, Geiger AM, et al.: The risk of death from heart disease in patients with nonsmall cell lung cancer who receive postoperative radiotherapy: analysis of the Surveillance, Epidemiology, and End Results database. Cancer 2007,110(4):911-917. 10.1002/cncr.22845CrossRefPubMed
22.
go back to reference Lomax AJ: Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol 2008,53(4):1043-1056. 10.1088/0031-9155/53/4/015CrossRefPubMed Lomax AJ: Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol 2008,53(4):1043-1056. 10.1088/0031-9155/53/4/015CrossRefPubMed
23.
go back to reference Unkelbach J, Bortfeld T, Martin BC, Soukup M: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys 2009, 36: 149-163. 10.1118/1.3021139CrossRefPubMedPubMedCentral Unkelbach J, Bortfeld T, Martin BC, Soukup M: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys 2009, 36: 149-163. 10.1118/1.3021139CrossRefPubMedPubMedCentral
24.
go back to reference Pflugfelder D, Wilkens JJ, Oelfke U: Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2008, 53: 1689-1700. 10.1088/0031-9155/53/6/013CrossRefPubMed Pflugfelder D, Wilkens JJ, Oelfke U: Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol 2008, 53: 1689-1700. 10.1088/0031-9155/53/6/013CrossRefPubMed
26.
go back to reference Hui Z, Zhang X, Starkschall G, et al.: Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer. Int J Radiat Oncol Biol Phys 2008,72(5):1385-1395. 10.1016/j.ijrobp.2008.03.007CrossRefPubMedPubMedCentral Hui Z, Zhang X, Starkschall G, et al.: Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer. Int J Radiat Oncol Biol Phys 2008,72(5):1385-1395. 10.1016/j.ijrobp.2008.03.007CrossRefPubMedPubMedCentral
27.
go back to reference Kraus KM, Heath E, Oelfke U: Dosimetric consequences of tumour motion due to respiration for a scanned proton beam. Phys Med Biol 2011,56(20):6563-6581. 10.1088/0031-9155/56/20/003CrossRefPubMed Kraus KM, Heath E, Oelfke U: Dosimetric consequences of tumour motion due to respiration for a scanned proton beam. Phys Med Biol 2011,56(20):6563-6581. 10.1088/0031-9155/56/20/003CrossRefPubMed
Metadata
Title
An in-silico comparison of proton beam and IMRT for postoperative radiotherapy in completely resected stage IIIA non-small cell lung cancer
Authors
Abigail T Berman
Boon-Keng Kevin Teo
Derek Dolney
Samuel Swisher-McClure
Kambiz Shahnazi
Stefan Both
Ramesh Rengan
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-144

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue