Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2013

Open Access 01-12-2013 | Review

A comparison approach to explain risks related to X-ray imaging for scoliosis, 2012 SOSORT award winner

Authors: Nicola Pace, Leonardo Ricci, Stefano Negrini

Published in: Scoliosis and Spinal Disorders | Issue 1/2013

Login to get access

Abstract

Background

X-ray imaging is frequently used as diagnostic approach for scoliosis in children and adolescents. X-ray procedures are considered as justified only when expected benefits exceed related risks. While benefits are well known to physicians, radiological risk awareness can be vague, impeding an optimal communication with patients’ parents and possibly leading to discomfort and anxiety. Objective of the study is the suggestion of a risk comparison approach for better communicating the radiological risks related to X-ray investigation of scoliosis.

Methods

Starting point of the analysis is the Linear Non-Threshold (LNT) assumption for radiation stochastic effect, which states that for effective doses (E, Sievert – Sv) below 100 mSv, the probability of future stochastic damage is linearly related to E: absorbing two E’s in separate moments results in the addition of the risks related to each E. This allows to add E from different sources to calculate a cumulative risk of health detriment. Medline (Pubmed) was systematically searched in order to determine the average E delivered during X-ray investigation of scoliosis. Subsequently, the major natural sources of radiation were considered. The average yearly E due to natural sources was compared with E due to the imaging of the vertebral column.

Results

E’s due to X-ray scoliosis examinations show a large variability: under 7 years of age, 0.03-0.54 mSv; 7–12 years, 0.11-0.80 mSv; 13–18 years, 0.17-1.09 mSv. Overall, 65% of the world population is expected to be exposed to an annual E between 1 and 3 mSv. More in detail, worldwide the total annual average E due to natural sources is 2.4 mSv (range 1–10), of which half originates from Radon exposure. Other sources are cosmic rays and ingestion and inhalation of radionuclides. For example, one flight between Europe and America accounts for 0.030-0.045 mSv because of exposure to cosmic rays.

Conclusions

X-rays are carcinogenic and exposures to them always need to be justified and optimized in order to minimize the risks of health effects. However, the human body is continuously struck by radiations coming from natural sources. A useful element of comparison to evaluate E due to medical exposures in scoliosis can be then provided by the amount of E coming from natural sources. This comparison approach can play a role in the relationship between physicians and patients’ parents and lead to an improved awareness in patients’ parents.
Literature
1.
go back to reference Roobottom CA, Mitchell G, Morgan-Hughes G: Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol. 2010, 65 (11): 859-867. 10.1016/j.crad.2010.04.021.CrossRefPubMed Roobottom CA, Mitchell G, Morgan-Hughes G: Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol. 2010, 65 (11): 859-867. 10.1016/j.crad.2010.04.021.CrossRefPubMed
2.
go back to reference IMV, Limited: IMV 2010 X-RAY/DR/CR MARKET OUTLOOK REPORT. 2010 IMV, Limited: IMV 2010 X-RAY/DR/CR MARKET OUTLOOK REPORT. 2010
3.
go back to reference Hart D, Wall BF, Hillier MC, Shrimpton PC: Frequency and Collective Dose for Medical and Dental X-ray Examinations in the UK, 2008. 2010, Chilton Didcot, Oxfordshire, UK: Health Protection Agency Hart D, Wall BF, Hillier MC, Shrimpton PC: Frequency and Collective Dose for Medical and Dental X-ray Examinations in the UK, 2008. 2010, Chilton Didcot, Oxfordshire, UK: Health Protection Agency
5.
go back to reference ICRP: 1990 Recommendations of the international commission on radiological protection. ICRP publication 60. Ann ICRP. 1991, 21: 1-3.CrossRef ICRP: 1990 Recommendations of the international commission on radiological protection. ICRP publication 60. Ann ICRP. 1991, 21: 1-3.CrossRef
6.
go back to reference ICRP: The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007, 37: 2-4.CrossRef ICRP: The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007, 37: 2-4.CrossRef
7.
go back to reference Radiation C to AHR from E to LL of I, Council NR: Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. 2006, The National Academies Press Radiation C to AHR from E to LL of I, Council NR: Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. 2006, The National Academies Press
8.
go back to reference Sakata R, Grant EJ, Ozasa K: Long-term follow-up of atomic bomb survivors. Maturitas. 2012, 72 (2): 99-103. 10.1016/j.maturitas.2012.02.009.CrossRefPubMed Sakata R, Grant EJ, Ozasa K: Long-term follow-up of atomic bomb survivors. Maturitas. 2012, 72 (2): 99-103. 10.1016/j.maturitas.2012.02.009.CrossRefPubMed
9.
go back to reference Baumann BM, Chen EH, Mills AM, Glaspey L, Thompson NM, Jones MK: Patient perceptions of computed tomographic imaging and their understanding of radiation risk and exposure. Ann Emerg Med. 2011, 58 (1): 1-7. 10.1016/j.annemergmed.2010.10.018. e2CrossRefPubMed Baumann BM, Chen EH, Mills AM, Glaspey L, Thompson NM, Jones MK: Patient perceptions of computed tomographic imaging and their understanding of radiation risk and exposure. Ann Emerg Med. 2011, 58 (1): 1-7. 10.1016/j.annemergmed.2010.10.018. e2CrossRefPubMed
10.
go back to reference Freudenberg LS, Beyer T: Subjective perception of radiation risk. J Nucl Med. 2011, 52 (2): 29S-35S.CrossRefPubMed Freudenberg LS, Beyer T: Subjective perception of radiation risk. J Nucl Med. 2011, 52 (2): 29S-35S.CrossRefPubMed
11.
go back to reference Shimizu Y, Pierce DA, Preston DL, Mabuchi K: Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990. Radiat Res. 1999, 152 (4): 374-389. 10.2307/3580222.CrossRefPubMed Shimizu Y, Pierce DA, Preston DL, Mabuchi K: Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990. Radiat Res. 1999, 152 (4): 374-389. 10.2307/3580222.CrossRefPubMed
12.
go back to reference Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K: Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003, 160 (4): 381-407. 10.1667/RR3049.CrossRefPubMed Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K: Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003, 160 (4): 381-407. 10.1667/RR3049.CrossRefPubMed
13.
go back to reference National council on radiation protection and measurements (NCRP): N.C.R.P. Report No: 136 - Evaluation of the Linear-Nonthreshold Dose–response Model for Ionizing Radiation. 2001, Bethesda, Maryland National council on radiation protection and measurements (NCRP): N.C.R.P. Report No: 136 - Evaluation of the Linear-Nonthreshold Dose–response Model for Ionizing Radiation. 2001, Bethesda, Maryland
14.
go back to reference United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): Sources and Effects of Ionizing Radiation. UNSCEAR 1993 Report. 1993, New York: United Nations United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): Sources and Effects of Ionizing Radiation. UNSCEAR 1993 Report. 1993, New York: United Nations
15.
go back to reference United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): Sources and Effects of Ionizing Radiation. Volume I: Sources. UNSCEAR 2000 Report. 2000, New York: United Nations United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): Sources and Effects of Ionizing Radiation. Volume I: Sources. UNSCEAR 2000 Report. 2000, New York: United Nations
16.
go back to reference Mogaadi M, Ben Omrane L, Hammou A: Effective dose for scoliosis patients undergoing full spine radiography. Radiat Prot Dosimetry. 2012, 149 (3): 297-303. 10.1093/rpd/ncr254.CrossRefPubMed Mogaadi M, Ben Omrane L, Hammou A: Effective dose for scoliosis patients undergoing full spine radiography. Radiat Prot Dosimetry. 2012, 149 (3): 297-303. 10.1093/rpd/ncr254.CrossRefPubMed
17.
go back to reference Gialousis G, Yiakoumakis EN, Makri TK, Papadoupoulou D, Karlatira M, Karaiskos P: Comparison of dose from radiological examination for scoliosis in children among two pediatric hospitals by Monte Carlo simulation. Health Phys. 2008, 94 (5): 471-478. 10.1097/01.HP.0000303105.91168.ea.CrossRefPubMed Gialousis G, Yiakoumakis EN, Makri TK, Papadoupoulou D, Karlatira M, Karaiskos P: Comparison of dose from radiological examination for scoliosis in children among two pediatric hospitals by Monte Carlo simulation. Health Phys. 2008, 94 (5): 471-478. 10.1097/01.HP.0000303105.91168.ea.CrossRefPubMed
18.
go back to reference Hansen J, Jurik AG, Fiirgaard B, Egund N: Optimisation of scoliosis examinations in children. Pediatr Radiol. 2003, 33 (11): 752-765. 10.1007/s00247-003-1015-5.CrossRefPubMed Hansen J, Jurik AG, Fiirgaard B, Egund N: Optimisation of scoliosis examinations in children. Pediatr Radiol. 2003, 33 (11): 752-765. 10.1007/s00247-003-1015-5.CrossRefPubMed
19.
go back to reference ICRP: Implications of Commission Recommendations that Doses be Kept as Low as Readily Achievable. ICRP Publication 22. 1973, Oxford: Pergamon Press ICRP: Implications of Commission Recommendations that Doses be Kept as Low as Readily Achievable. ICRP Publication 22. 1973, Oxford: Pergamon Press
20.
go back to reference Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM: Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010, 174 (1): 83-90. 10.1667/RR2022.1.CrossRefPubMedPubMedCentral Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM: Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010, 174 (1): 83-90. 10.1667/RR2022.1.CrossRefPubMedPubMedCentral
21.
go back to reference Amis ES, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM: American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007, 4 (5): 272-284. 10.1016/j.jacr.2007.03.002.CrossRefPubMed Amis ES, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM: American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007, 4 (5): 272-284. 10.1016/j.jacr.2007.03.002.CrossRefPubMed
Metadata
Title
A comparison approach to explain risks related to X-ray imaging for scoliosis, 2012 SOSORT award winner
Authors
Nicola Pace
Leonardo Ricci
Stefano Negrini
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2013
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-8-11

Other articles of this Issue 1/2013

Scoliosis and Spinal Disorders 1/2013 Go to the issue