Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2013

Open Access 01-12-2013 | Research

An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity

Authors: J Paige Little, Maree T Izatt, Robert D Labrom, Geoffrey N Askin, Clayton J Adam

Published in: Scoliosis and Spinal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may require surgical correction by attaching a rod to the patient’s spine using screws implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the deformity by applying compressive forces across the intervertebral disc spaces while they secure the rod to the vertebra. We were interested to understand how the deformity correction is influenced by increasing magnitudes of surgical corrective forces and what tissue level stresses are predicted at the vertebral endplates due to the surgical correction.

Methods

Patient-specific finite element models of the osseoligamentous spine and ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were created using pre-operative computed tomography (CT) scans. The surgically altered spine, including titanium rod and vertebral screws, was simulated. The models were analysed using data for intra-operatively measured compressive forces – three load profiles representing the mean and upper and lower standard deviation of this data were analysed. Data for the clinically observed deformity correction (Cobb angle) were compared with the model-predicted correction and the model results investigated to better understand the influence of increased compressive forces on the biomechanics of the instrumented joints.

Results

The predicted corrected Cobb angle for seven of the eight FE models were within the 5° clinical Cobb measurement variability for at least one of the force profiles. The largest portion of overall correction was predicted at or near the apical intervertebral disc for all load profiles. Model predictions for four of the eight patients showed endplate-to-endplate contact was occurring on adjacent endplates of one or more intervertebral disc spaces in the instrumented curve following the surgical loading steps.

Conclusion

This study demonstrated there is a direct relationship between intra-operative joint compressive forces and the degree of deformity correction achieved. The majority of the deformity correction will occur at or in adjacent spinal levels to the apex of the deformity. This study highlighted the importance of the intervertebral disc space anatomy in governing the coronal plane deformity correction and the limit of this correction will be when bone-to-bone contact of the opposing vertebral endplates occurs.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hawes MC, O'Brien JP: A century of spine surgery: what can patients expect?. Disab rehab. 2008, 30: 808-817. 10.1080/09638280801889972.CrossRef Hawes MC, O'Brien JP: A century of spine surgery: what can patients expect?. Disab rehab. 2008, 30: 808-817. 10.1080/09638280801889972.CrossRef
3.
go back to reference Lowe TG, Betz R, Lenke L, Clements D, Harms J, Newton P, Haher T, Merola A, Wenger D: Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine (Phila Pa 1976). 2003, 28: S208-S216. 10.1097/01.BRS.0000092483.10776.2A.CrossRef Lowe TG, Betz R, Lenke L, Clements D, Harms J, Newton P, Haher T, Merola A, Wenger D: Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine (Phila Pa 1976). 2003, 28: S208-S216. 10.1097/01.BRS.0000092483.10776.2A.CrossRef
4.
go back to reference Lenke LG: Anterior endoscopic discectomy and fusion for adolescent idiopathic scoliosis. Spine. 2003, 28: S36-S43.CrossRefPubMed Lenke LG: Anterior endoscopic discectomy and fusion for adolescent idiopathic scoliosis. Spine. 2003, 28: S36-S43.CrossRefPubMed
5.
go back to reference Aubin CE, Petit Y, Stokes IA, Poulin F, Gardner-Morse M, Labelle H: Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput methods biomech biomed eng. 2003, 6: 27-32. 10.1080/1025584031000072237.CrossRef Aubin CE, Petit Y, Stokes IA, Poulin F, Gardner-Morse M, Labelle H: Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput methods biomech biomed eng. 2003, 6: 27-32. 10.1080/1025584031000072237.CrossRef
6.
go back to reference Rohlmann A, Richter M, Zander T, Klockner C, Bergmann G: Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J. 2006, 15: 457-464. 10.1007/s00586-005-0923-5.CrossRefPubMed Rohlmann A, Richter M, Zander T, Klockner C, Bergmann G: Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J. 2006, 15: 457-464. 10.1007/s00586-005-0923-5.CrossRefPubMed
7.
go back to reference Dumas R, Lafage V, Lafon Y, Steib JP, Mitton D, Skalli W: Finite element simulation of spinal deformities correction by in situ contouring technique. Comput methods biomech biomed eng. 2005, 8: 331-337. 10.1080/10255840500309653.CrossRef Dumas R, Lafage V, Lafon Y, Steib JP, Mitton D, Skalli W: Finite element simulation of spinal deformities correction by in situ contouring technique. Comput methods biomech biomed eng. 2005, 8: 331-337. 10.1080/10255840500309653.CrossRef
8.
go back to reference Little JP, Adam C: Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: Predicted vs clinical correction for a preliminary series of six patients. Int J Num Methods Biomed Eng. 2011, 27: 347-356. 10.1002/cnm.1422.CrossRef Little JP, Adam C: Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: Predicted vs clinical correction for a preliminary series of six patients. Int J Num Methods Biomed Eng. 2011, 27: 347-356. 10.1002/cnm.1422.CrossRef
9.
go back to reference Kamimura M, Kinoshita T, Itoh H, Yuzawa Y, Takahashi J, Hirabayashi H, Nakamura I: Preoperative CT examination for accurate and safe anterior spinal instrumentation surgery with endoscopic approach. J Spinal Disord Tech. 2002, 15: 47-51. 10.1097/00024720-200202000-00008. discussion 51–42CrossRefPubMed Kamimura M, Kinoshita T, Itoh H, Yuzawa Y, Takahashi J, Hirabayashi H, Nakamura I: Preoperative CT examination for accurate and safe anterior spinal instrumentation surgery with endoscopic approach. J Spinal Disord Tech. 2002, 15: 47-51. 10.1097/00024720-200202000-00008. discussion 51–42CrossRefPubMed
10.
go back to reference Fairhurst H, Little JP, Adam CJ: Annual meeting of the spine society of australia; 15–17 april. The measurement of applied forces during anterior single rod correction of adolescent idiopathic scoliosis (AIS). 2011, Melbourne, Australia Fairhurst H, Little JP, Adam CJ: Annual meeting of the spine society of australia; 1517 april. The measurement of applied forces during anterior single rod correction of adolescent idiopathic scoliosis (AIS). 2011, Melbourne, Australia
11.
go back to reference Little JP, Adam CJ: Patient-specific modelling of scoliosis. Patient-specific modelling in Tomorrow's medicine. Edited by: Gefen A. 2012, Berlin: Springer Little JP, Adam CJ: Patient-specific modelling of scoliosis. Patient-specific modelling in Tomorrow's medicine. Edited by: Gefen A. 2012, Berlin: Springer
12.
go back to reference Little JP, Pearcy MJ, Pettet GJ: Parametric equations to represent the profile of the human intervertebral disc in the transverse plane. Med biol eng comput. 2007, 45: 939-945. 10.1007/s11517-007-0242-6.CrossRefPubMed Little JP, Pearcy MJ, Pettet GJ: Parametric equations to represent the profile of the human intervertebral disc in the transverse plane. Med biol eng comput. 2007, 45: 939-945. 10.1007/s11517-007-0242-6.CrossRefPubMed
13.
go back to reference Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC: An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine. 2002, 27: E64-E70. 10.1097/00007632-200202010-00007.CrossRefPubMed Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC: An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine. 2002, 27: E64-E70. 10.1097/00007632-200202010-00007.CrossRefPubMed
14.
go back to reference Watkins R, 3rd Watkins R, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T: Stability provided by the sternum and rib cage in the thoracic spine. Spine. 2005, 30: 1283-1286. 10.1097/01.brs.0000164257.69354.bb.CrossRefPubMed Watkins R, 3rd Watkins R, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T: Stability provided by the sternum and rib cage in the thoracic spine. Spine. 2005, 30: 1283-1286. 10.1097/01.brs.0000164257.69354.bb.CrossRefPubMed
15.
go back to reference Little JP, Adam CJ: Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation. Clin Biomech (Bristol, Avon). 2011, 26: 895-903. 10.1016/j.clinbiomech.2011.05.004.CrossRef Little JP, Adam CJ: Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation. Clin Biomech (Bristol, Avon). 2011, 26: 895-903. 10.1016/j.clinbiomech.2011.05.004.CrossRef
16.
go back to reference Reutlinger C, Hasler C, Scheffler K, Buchler P: Intraoperative determination of the load-displacement behavior of scoliotic spinal motion segments: preliminary clinical results. Eur Spine J. 2012, 21 (Suppl 6): S860-867.CrossRefPubMed Reutlinger C, Hasler C, Scheffler K, Buchler P: Intraoperative determination of the load-displacement behavior of scoliotic spinal motion segments: preliminary clinical results. Eur Spine J. 2012, 21 (Suppl 6): S860-867.CrossRefPubMed
17.
go back to reference Little JP, Adam C: Towards determining soft tissue properties for modelling spine surgery: current progress and challenges. Medical & biological engineering & computing. 2012, 50: 199-209. 10.1007/s11517-011-0848-6.CrossRef Little JP, Adam C: Towards determining soft tissue properties for modelling spine surgery: current progress and challenges. Medical & biological engineering & computing. 2012, 50: 199-209. 10.1007/s11517-011-0848-6.CrossRef
18.
go back to reference Little JP, Adam CJ: The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976). 2009, 34: E76-82. 10.1097/BRS.0b013e31818ad584.CrossRef Little JP, Adam CJ: The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976). 2009, 34: E76-82. 10.1097/BRS.0b013e31818ad584.CrossRef
19.
go back to reference Andriacchi T, Schultz A, Belytschko T, Galante J:A model for studies of mechanical interactions between the human spine and rib cage. Journal of biomechanics. 1974, 7: 497-507. 10.1016/0021-9290(74)90084-0.CrossRefPubMed Andriacchi T, Schultz A, Belytschko T, Galante J:A model for studies of mechanical interactions between the human spine and rib cage. Journal of biomechanics. 1974, 7: 497-507. 10.1016/0021-9290(74)90084-0.CrossRefPubMed
20.
go back to reference Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G:Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of biomechanics. 1985, 18: 167-176. 10.1016/0021-9290(85)90202-7.CrossRefPubMed Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G:Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of biomechanics. 1985, 18: 167-176. 10.1016/0021-9290(85)90202-7.CrossRefPubMed
21.
go back to reference Kimpara H, Lee JB, Yang KH, King AI, Iwamoto M, Watanabe I, Miki K:Development of a Three-Dimensional Finite Element Chest Model for the 5(th) Percentile Female. Stapp car crash journal. 2005, 49: 251-269.PubMed Kimpara H, Lee JB, Yang KH, King AI, Iwamoto M, Watanabe I, Miki K:Development of a Three-Dimensional Finite Element Chest Model for the 5(th) Percentile Female. Stapp car crash journal. 2005, 49: 251-269.PubMed
22.
go back to reference Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ:Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys. 1999, 21: 689-700. 10.1016/S1350-4533(00)00002-3.CrossRefPubMed Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ:Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys. 1999, 21: 689-700. 10.1016/S1350-4533(00)00002-3.CrossRefPubMed
23.
go back to reference Lemosse D, Le Rue O, Diop A, Skalli W, Marec P, Lavaste F:Characterization of the mechanical behaviour parameters of the costo-vertebral joint. Eur Spine J. 1998, 7: 16-23. 10.1007/s005860050021.CrossRefPubMedPubMedCentral Lemosse D, Le Rue O, Diop A, Skalli W, Marec P, Lavaste F:Characterization of the mechanical behaviour parameters of the costo-vertebral joint. Eur Spine J. 1998, 7: 16-23. 10.1007/s005860050021.CrossRefPubMedPubMedCentral
24.
go back to reference Little JP: Finite element modelling of anular lesions in the lumbar intervertebral disc. 2004, Queensland University of Technology: School of Mechanical, Manufacturing and Medical Engineering Little JP: Finite element modelling of anular lesions in the lumbar intervertebral disc. 2004, Queensland University of Technology: School of Mechanical, Manufacturing and Medical Engineering
25.
go back to reference Lu YM, Hutton WC, Gharpuray VM:Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine. 1996, 21: 2570-2579. 10.1097/00007632-199611150-00006.CrossRefPubMed Lu YM, Hutton WC, Gharpuray VM:Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine. 1996, 21: 2570-2579. 10.1097/00007632-199611150-00006.CrossRefPubMed
26.
go back to reference Nachemson A:Lumbar Intradiscal Pressure: experimental studies on post-mortem material. Acta Orthopaedica Scandinavica. 1960, 43: Nachemson A:Lumbar Intradiscal Pressure: experimental studies on post-mortem material. Acta Orthopaedica Scandinavica. 1960, 43:
27.
go back to reference Nolte LP, Panjabi M, Oxland T:Biomechanical properties of lumbar spinal ligaments. Clinical implant materials. Edited by: Heimke G, Soltesz U, Lee AJC. 1990, Elsevier Science Publishing, 663-668. Nolte LP, Panjabi M, Oxland T:Biomechanical properties of lumbar spinal ligaments. Clinical implant materials. Edited by: Heimke G, Soltesz U, Lee AJC. 1990, Elsevier Science Publishing, 663-668.
28.
go back to reference Stokes IA, Laible JP:Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. Journal of biomechanics. 1990, 23: 589-595. 10.1016/0021-9290(90)90051-4.CrossRefPubMed Stokes IA, Laible JP:Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. Journal of biomechanics. 1990, 23: 589-595. 10.1016/0021-9290(90)90051-4.CrossRefPubMed
29.
go back to reference Natali AN:A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis. J Biomed Eng. 1991, 13: 163-168. 10.1016/0141-5425(91)90063-D.CrossRefPubMed Natali AN:A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis. J Biomed Eng. 1991, 13: 163-168. 10.1016/0141-5425(91)90063-D.CrossRefPubMed
30.
go back to reference Shirazi-Adl A, Ahmed AM, Shrivastava SC:Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine. 1986, 11: 914-927. 10.1097/00007632-198611000-00012.CrossRefPubMed Shirazi-Adl A, Ahmed AM, Shrivastava SC:Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine. 1986, 11: 914-927. 10.1097/00007632-198611000-00012.CrossRefPubMed
31.
go back to reference Vrtovec T, Pernus F, Likar B:A review of methods for quantitative evaluation of spinal curvature. Eur Spine J. 2009, 18: 593-607. 10.1007/s00586-009-0913-0.CrossRefPubMed Vrtovec T, Pernus F, Likar B:A review of methods for quantitative evaluation of spinal curvature. Eur Spine J. 2009, 18: 593-607. 10.1007/s00586-009-0913-0.CrossRefPubMed
32.
go back to reference Duke K, Aubin CE, Dansereau J, Labelle H:Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech (Bristol, Avon). 2005, 20: 923-931. 10.1016/j.clinbiomech.2005.05.006.CrossRef Duke K, Aubin CE, Dansereau J, Labelle H:Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech (Bristol, Avon). 2005, 20: 923-931. 10.1016/j.clinbiomech.2005.05.006.CrossRef
Metadata
Title
An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity
Authors
J Paige Little
Maree T Izatt
Robert D Labrom
Geoffrey N Askin
Clayton J Adam
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2013
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-8-9

Other articles of this Issue 1/2013

Scoliosis and Spinal Disorders 1/2013 Go to the issue