Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2010

Open Access 01-12-2010 | Research

Interleukin 2-regulated in vitro antibody production following a single spinal manipulative treatment in normal subjects

Authors: Julita A Teodorczyk-Injeyan, Marion McGregor, Richard Ruegg, H Stephen Injeyan

Published in: Chiropractic & Manual Therapies | Issue 1/2010

Login to get access

Abstract

Background

Our recent investigations have demonstrated that cell cultures from subjects, who received a single spinal manipulative treatment in the upper thoracic spine, show increased capacity for the production of the key immunoregulatory cytokine, interleukin-2. However, it has not been determined if such changes influence the response of the immune effector cells. Thus, the purpose of the present study was to determine whether, in the same subjects, spinal manipulation-related augmentation of the in vitro interleukin-2 synthesis is associated with the modulation of interleukin 2-dependent and/or interleukin-2-induced humoral immune response (antibody synthesis).

Methods

A total of seventy-four age and sex-matched healthy asymptomatic subjects were studied. The subjects were assigned randomly to: venipuncture control (n = 22), spinal manipulative treatment without cavitation (n = 25) or spinal manipulative treatment associated with cavitation (n = 27) groups. Heparinized blood samples were obtained from the subjects before (baseline) and then at 20 minutes and 2 hours post-treatment. Immunoglobulin (antibody) synthesis was induced in cultures of peripheral blood mononuclear cells by stimulation with conventional pokeweed mitogen or by application of human recombinant interleukin-2. Determinations of the levels of immunoglobulin G and immunoglobulin M production in culture supernatants were performed by specific immunoassays.

Results

The baseline levels of immunoglobulin synthesis induced by pokeweed mitogen or human recombinant interleukin-2 stimulation were comparable in all groups. No significant changes in the production of pokeweed mitogen-induced immunoglobulins were observed during the post-treatment period in any of the study groups. In contrast, the production of interleukin-2 -induced immunoglobulin G and immunoglobulin M was significantly increased in cultures from subjects treated with spinal manipulation. At 20 min post-manipulation, immunoglobulin G synthesis was significantly elevated in subjects who received manipulation with cavitation, relative to that in cultures from subjects who received manipulation without cavitation and venipuncture alone. At 2 hr post-treatment, immunoglobulin M synthesis was significantly elevated in subjects who received manipulation with cavitation relative to the venipuncture group. There were no quantitative alterations within the population of peripheral blood B or T lymphocytes in the studied cultures.

Conclusion

Spinal manipulative treatment does not increase interleukin-2 -dependent polyclonal immunoglobulin synthesis by mitogen-activated B cells. However, antibody synthesis induced by interleukin-2 alone can be, at least temporarily, augmented following spinal manipulation. Thus, under certain physiological conditions spinal manipulative treatment might influence interleukin-2 -regulated biological responses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Downing JEG, Miyan JA: Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol Today. 2000, 21: 281-289. 10.1016/S0167-5699(00)01635-2.CrossRefPubMed Downing JEG, Miyan JA: Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol Today. 2000, 21: 281-289. 10.1016/S0167-5699(00)01635-2.CrossRefPubMed
2.
go back to reference Straub RH, Besedovsky HO: Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB. 2003, 17: 2176-2183. 10.1096/fj.03-0433hyp.CrossRef Straub RH, Besedovsky HO: Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB. 2003, 17: 2176-2183. 10.1096/fj.03-0433hyp.CrossRef
3.
go back to reference Sato A, Budgell B: Somotoautonomic reflexes. Principles and practice of chiropractic. Edited by: Haldeman S. 2005, Mc Graw-Hill, New York, 301-314. Sato A, Budgell B: Somotoautonomic reflexes. Principles and practice of chiropractic. Edited by: Haldeman S. 2005, Mc Graw-Hill, New York, 301-314.
4.
go back to reference Budgell B, Hotta H, Sato A: Spinovisceral reflexes evoked by noxious and innocuous stimulation of the lumbar spine. J Neuromuscul Syst. 1995, 3: 122-131. Budgell B, Hotta H, Sato A: Spinovisceral reflexes evoked by noxious and innocuous stimulation of the lumbar spine. J Neuromuscul Syst. 1995, 3: 122-131.
5.
go back to reference Sato A, Sato Y, Schmidt RF: The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol. 1997, 130: 1-328. full_text.PubMed Sato A, Sato Y, Schmidt RF: The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol. 1997, 130: 1-328. full_text.PubMed
6.
go back to reference Brennan PC, Graham MA, Triano JJ, Hondras MA, Anderson RJ: Lymphocyte profiles in patients with chronic back pain enrolled in a clinical trial. J Manipulative Physiol Ther. 1994, 17: 219-227.PubMed Brennan PC, Graham MA, Triano JJ, Hondras MA, Anderson RJ: Lymphocyte profiles in patients with chronic back pain enrolled in a clinical trial. J Manipulative Physiol Ther. 1994, 17: 219-227.PubMed
7.
go back to reference Pickar JG: Neurophysiological effects of spinal manipulation. The Spine J. 2002, 2: 357-371. 10.1016/S1529-9430(02)00400-X.CrossRefPubMed Pickar JG: Neurophysiological effects of spinal manipulation. The Spine J. 2002, 2: 357-371. 10.1016/S1529-9430(02)00400-X.CrossRefPubMed
8.
go back to reference Teodorczyk-Injeyan JA, Injeyan HS, Ruegg R: Spinal manipulative therapy reduces inflammatory cytokines but not substance P production in normal subjects. J Manipulative Physiol Ther. 2006, 29: 14-21. 10.1016/j.jmpt.2005.10.002.CrossRefPubMed Teodorczyk-Injeyan JA, Injeyan HS, Ruegg R: Spinal manipulative therapy reduces inflammatory cytokines but not substance P production in normal subjects. J Manipulative Physiol Ther. 2006, 29: 14-21. 10.1016/j.jmpt.2005.10.002.CrossRefPubMed
9.
go back to reference Teodorczyk-Injeyan JA, Injeyan HS, McGregor M, Harris GM, Ruegg R: Enhancement of in vitro interleukin-2 production in normal subjects following a single spinal manipulative treatment. Chiropractic & Osteopathy. 2008, 16: 5-CrossRef Teodorczyk-Injeyan JA, Injeyan HS, McGregor M, Harris GM, Ruegg R: Enhancement of in vitro interleukin-2 production in normal subjects following a single spinal manipulative treatment. Chiropractic & Osteopathy. 2008, 16: 5-CrossRef
10.
go back to reference Ceuppens JL, Stevens EA: Immunoglobulin production in cultures of pokeweed mitogen stimulated human peripheral blood mononuclear cells requires interaction of interleukin 2 with the B cells. Cell Immunol. 1986, 98: 1-7. 10.1016/0008-8749(86)90261-3.CrossRefPubMed Ceuppens JL, Stevens EA: Immunoglobulin production in cultures of pokeweed mitogen stimulated human peripheral blood mononuclear cells requires interaction of interleukin 2 with the B cells. Cell Immunol. 1986, 98: 1-7. 10.1016/0008-8749(86)90261-3.CrossRefPubMed
11.
go back to reference Romagnani S, Del Prete G, Giudizi MG, Biagiotti R, Almerigogna F, Tiri A, Alessi A, Mazzeti M, Ricci M: Direct induction of human B-cell differentiation by recombinant interleukin-2. Immunology. 1986, 58: 31-35.PubMedCentralPubMed Romagnani S, Del Prete G, Giudizi MG, Biagiotti R, Almerigogna F, Tiri A, Alessi A, Mazzeti M, Ricci M: Direct induction of human B-cell differentiation by recombinant interleukin-2. Immunology. 1986, 58: 31-35.PubMedCentralPubMed
12.
go back to reference Peterson DH, Bergmann TF: The Spine: anatomy, biomechanics, assessment, and adjustive techniques. Chiropractic Technique. Edited by: Peterson DH BT. 2007, London, Mosby, 175-339. 2 Peterson DH, Bergmann TF: The Spine: anatomy, biomechanics, assessment, and adjustive techniques. Chiropractic Technique. Edited by: Peterson DH BT. 2007, London, Mosby, 175-339. 2
13.
go back to reference Teodorczyk-Injeyan JA, Sparkes BG, Peters WJ: Regulation of IgM production in thermally injured patients. Burns. 1989, 15: 241-247. 10.1016/0305-4179(89)90040-5.CrossRefPubMed Teodorczyk-Injeyan JA, Sparkes BG, Peters WJ: Regulation of IgM production in thermally injured patients. Burns. 1989, 15: 241-247. 10.1016/0305-4179(89)90040-5.CrossRefPubMed
14.
go back to reference Colton T: Statistics in medicine. 1972, Boston: Little, Brown and Company Colton T: Statistics in medicine. 1972, Boston: Little, Brown and Company
15.
go back to reference Punonnen J, Eskola J: Recombinant interleukin 2 induces proliferation and differentiation of human B lymphocytes. Acta Pathol Microbiol Immunol Scand. 1987, 95: 167-172. Punonnen J, Eskola J: Recombinant interleukin 2 induces proliferation and differentiation of human B lymphocytes. Acta Pathol Microbiol Immunol Scand. 1987, 95: 167-172.
16.
go back to reference Ralph P, Jeong G, Welte K, Mertelsmann R, Rabin H, Henderson LE, Souza LM, Boon TC, Robb RG: Stimulation of immunoglobulin secretion in human B lymphocytes as a direct effect of high concentrations of IL 2. J Immunol. 1984, 133: 2442-2445.PubMed Ralph P, Jeong G, Welte K, Mertelsmann R, Rabin H, Henderson LE, Souza LM, Boon TC, Robb RG: Stimulation of immunoglobulin secretion in human B lymphocytes as a direct effect of high concentrations of IL 2. J Immunol. 1984, 133: 2442-2445.PubMed
17.
go back to reference Hu J, Vaquero C, Huet S, Bernard A, Sterkers G: Interleukin 2 up-regulates its own production. J Immunol. 1987, 139: 4109-4115.PubMed Hu J, Vaquero C, Huet S, Bernard A, Sterkers G: Interleukin 2 up-regulates its own production. J Immunol. 1987, 139: 4109-4115.PubMed
18.
go back to reference Harel-Bellan A, Bertoglio J, Quillet A, Marchiol C, Wakasugi H, Mishall Z, Fradezi D: Interleukin 2 (IL 2) up-regulates its own receptor on a subset of human unprimed peripheral blood lymphocytes and triggers their proliferation. J Immunol. 1986, 136: 2463-2469.PubMed Harel-Bellan A, Bertoglio J, Quillet A, Marchiol C, Wakasugi H, Mishall Z, Fradezi D: Interleukin 2 (IL 2) up-regulates its own receptor on a subset of human unprimed peripheral blood lymphocytes and triggers their proliferation. J Immunol. 1986, 136: 2463-2469.PubMed
19.
go back to reference Miedema F, Melief CJM: T cell regulation of B cell activation. A reappraisal of the role of interleukin 2. Immunol Today. 1985, 6: 258-262. 10.1016/0167-5699(85)90061-1.CrossRefPubMed Miedema F, Melief CJM: T cell regulation of B cell activation. A reappraisal of the role of interleukin 2. Immunol Today. 1985, 6: 258-262. 10.1016/0167-5699(85)90061-1.CrossRefPubMed
20.
go back to reference Tanaka T, Saiki O, Doi S, Suemura M, Negoro S, Kishimoto S: Expression of novel interleukin 2 binding molecules and their functional roles on human B cell differentiation. J Clin Invest. 1988, 82: 316-321. 10.1172/JCI113589.PubMedCentralCrossRefPubMed Tanaka T, Saiki O, Doi S, Suemura M, Negoro S, Kishimoto S: Expression of novel interleukin 2 binding molecules and their functional roles on human B cell differentiation. J Clin Invest. 1988, 82: 316-321. 10.1172/JCI113589.PubMedCentralCrossRefPubMed
21.
go back to reference Neumann H, Wekerle H: Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol. 1998, 57: 1-9. 10.1097/00005072-199801000-00001.CrossRefPubMed Neumann H, Wekerle H: Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol. 1998, 57: 1-9. 10.1097/00005072-199801000-00001.CrossRefPubMed
22.
go back to reference Levite M: Nervous immunity: neurotransmitters, extracellular K+ and T cell function. TRENDS in Immunology. 2001, 22: 2-5. 10.1016/S1471-4906(00)01799-3.CrossRefPubMed Levite M: Nervous immunity: neurotransmitters, extracellular K+ and T cell function. TRENDS in Immunology. 2001, 22: 2-5. 10.1016/S1471-4906(00)01799-3.CrossRefPubMed
23.
go back to reference Teodorczyk-Injeyan JA, Injeyan HS, Ruegg R: Spinal manipulative therapy augments production of anti-inflammatory cytokine IL-10 in normal subjects. WFC 9th Biennial Congress Villamora, Portugal. 2007, 143-144. Teodorczyk-Injeyan JA, Injeyan HS, Ruegg R: Spinal manipulative therapy augments production of anti-inflammatory cytokine IL-10 in normal subjects. WFC 9th Biennial Congress Villamora, Portugal. 2007, 143-144.
24.
go back to reference Fluckiger AC, Garrone P, Durand I, Galizzi JP, Banchereau J: Interleukin 10 (IL-10) upregulates functional high affinity IL-2 receptors on normal and leukemic B lymphocytes. J Exp Med. 1993, 178: 1473-1478. 10.1084/jem.178.5.1473.CrossRefPubMed Fluckiger AC, Garrone P, Durand I, Galizzi JP, Banchereau J: Interleukin 10 (IL-10) upregulates functional high affinity IL-2 receptors on normal and leukemic B lymphocytes. J Exp Med. 1993, 178: 1473-1478. 10.1084/jem.178.5.1473.CrossRefPubMed
25.
go back to reference Nonoyama S, Farrington ML, Ochs HD: Effect of IL-2 on immunoglobulin production by anti-CD40-activated human B cells: synergistic effect with IL-10 and antagonistic effect with IL-4. Clin Immunol Immunopathol. 1994, 72: 3732-379. 10.1006/clin.1994.1155.CrossRef Nonoyama S, Farrington ML, Ochs HD: Effect of IL-2 on immunoglobulin production by anti-CD40-activated human B cells: synergistic effect with IL-10 and antagonistic effect with IL-4. Clin Immunol Immunopathol. 1994, 72: 3732-379. 10.1006/clin.1994.1155.CrossRef
26.
go back to reference Agematsu K, Nagumo H, Oguchi Y, Nakazawa T, Fukushima K, Yasui K, Ito S, Kobata T, Morimoto C, Komiyama A: Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood. 1998, 91: 173-180.PubMed Agematsu K, Nagumo H, Oguchi Y, Nakazawa T, Fukushima K, Yasui K, Ito S, Kobata T, Morimoto C, Komiyama A: Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood. 1998, 91: 173-180.PubMed
27.
go back to reference Pecanha LM, Snapper CM, Lees A, Yamaguchi H, Mond JJ: IL-10 inhibits T cell-independent but not T-cell dependent responses in vitro. J Immunol. 1993, 150: 3215-3223.PubMed Pecanha LM, Snapper CM, Lees A, Yamaguchi H, Mond JJ: IL-10 inhibits T cell-independent but not T-cell dependent responses in vitro. J Immunol. 1993, 150: 3215-3223.PubMed
28.
go back to reference Teodorczyk-Injeayn JA, Sparkes BG, Girotti MJ: Induced immunoglobulin secretion by T cell-replacing soluble factors from immunosuppressed blunt trauma patients. J Trauma. 1992, 33: 171-178. 10.1097/00005373-199208000-00002.CrossRef Teodorczyk-Injeayn JA, Sparkes BG, Girotti MJ: Induced immunoglobulin secretion by T cell-replacing soluble factors from immunosuppressed blunt trauma patients. J Trauma. 1992, 33: 171-178. 10.1097/00005373-199208000-00002.CrossRef
Metadata
Title
Interleukin 2-regulated in vitro antibody production following a single spinal manipulative treatment in normal subjects
Authors
Julita A Teodorczyk-Injeyan
Marion McGregor
Richard Ruegg
H Stephen Injeyan
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2010
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/1746-1340-18-26

Other articles of this Issue 1/2010

Chiropractic & Manual Therapies 1/2010 Go to the issue