Skip to main content
Top
Published in: Cough 1/2013

Open Access 01-12-2013 | Research

Intravenous lidocaine suppresses fentanyl-induced cough in Children

Authors: Agreta Gecaj-Gashi, Zorica Nikolova-Todorova, Vlora Ismaili-Jaha, Musli Gashi

Published in: Cough | Issue 1/2013

Login to get access

Abstract

Objective

Fentanyl-induced cough is usually mild and transitory, but it can be undesirable in patients with increased intracranial pressure, open wounds of the eye, dissecting aortic aneurism, pneumothorax, and reactive airway disease. The aim of this study is to evaluate the efficacy of lidocaine in suppressing fentanyl-induced cough in children during induction in general anesthesia.

Methods

One hundred and eighty-six children of both sexes, aged between 4–10 years, ASA physical status I and II, and scheduled for elective surgery, were recruited for the study. Patients with a history of bronchial asthma, obstructive pulmonary disease, or infections of the respiratory tract were excluded. Patients were randomly allocated to three equal groups (n = 62) to receive 1.0 mg/kg lidocaine (Group I), 0.5 mg/kg lidocaine (Group II), or placebo (equal volume of 0.9% saline; Group III). Each was administered over 5 s one minute before intravenous (IV) administration of fentanyl 2−3 μg/kg during induction in general anesthesia. The severity of coughing was graded by counting the number of episodes of cough: mild (1−2), moderate (3−4) or severe (5 or more).

Results

Demographic information was comparable between groups. The most frequent coughing was observed in the placebo group (Group III; 43.5%), of whom 4.8% (three patients) were graded with severe cough. In Group II, 22.6% patients had cough, of which 1.6% (one patient) was graded as severe. In Group I, 16.1% patients had cough, none of whom were graded as severe.

Conclusion

Our results demonstrate that IV lidocaine can markedly suppress fentanyl-induced cough in children, even in doses as low as 0.5 mg/kg.
Literature
1.
go back to reference Böhrer H, Fleischer F, Werning P: Tussive effect of a fentanyl bolus administered through a central venous catheter. Anaesthesia. 1990, 45: 18-21. 10.1111/j.1365-2044.1990.tb14496.x.CrossRefPubMed Böhrer H, Fleischer F, Werning P: Tussive effect of a fentanyl bolus administered through a central venous catheter. Anaesthesia. 1990, 45: 18-21. 10.1111/j.1365-2044.1990.tb14496.x.CrossRefPubMed
2.
go back to reference Phua WT, Teh BT, Jong W, Lee TL, Tweed WA: Tussive effect of a fentanyl bolus. Can J Anaesth. 1991, 38: 330-334. 10.1007/BF03007623.CrossRefPubMed Phua WT, Teh BT, Jong W, Lee TL, Tweed WA: Tussive effect of a fentanyl bolus. Can J Anaesth. 1991, 38: 330-334. 10.1007/BF03007623.CrossRefPubMed
3.
4.
go back to reference Agarwal A, Azim A, Ambesh S, et al: Sabutamol, beclomethasone or sodium chromoglycate suppress coughing induced by iv fentanyl. Can J Anesth. 2003, 50: 297-300. 10.1007/BF03017801.CrossRefPubMed Agarwal A, Azim A, Ambesh S, et al: Sabutamol, beclomethasone or sodium chromoglycate suppress coughing induced by iv fentanyl. Can J Anesth. 2003, 50: 297-300. 10.1007/BF03017801.CrossRefPubMed
5.
go back to reference Pandey CK, Raza M, Ranjan R, et al: Intravenous lidocaine suppresses fentanyl-induced coughing: a double-blind, prospective, randomized placebo-controlled study. Anesth Analg. 2004, 99: 1696-1698.CrossRefPubMed Pandey CK, Raza M, Ranjan R, et al: Intravenous lidocaine suppresses fentanyl-induced coughing: a double-blind, prospective, randomized placebo-controlled study. Anesth Analg. 2004, 99: 1696-1698.CrossRefPubMed
6.
go back to reference Ambesh SP, Singh N, Srivastava K: Fentanyl induced coughing caused life-threatening airway obstruction in a patient with arteriovenous malformation of tongue and hypopharynx. Internet J Anesthesiol. 2009, 20: 1- Ambesh SP, Singh N, Srivastava K: Fentanyl induced coughing caused life-threatening airway obstruction in a patient with arteriovenous malformation of tongue and hypopharynx. Internet J Anesthesiol. 2009, 20: 1-
7.
go back to reference Yukioka H, Hayashi M, Yoshimoto N, et al: IV lidocaine as a suppressant of coughing during tracheal intubation. Anesth Analg. 1985, 64: 1189-1192.PubMed Yukioka H, Hayashi M, Yoshimoto N, et al: IV lidocaine as a suppressant of coughing during tracheal intubation. Anesth Analg. 1985, 64: 1189-1192.PubMed
8.
go back to reference Smith FR, Kundahl PC: Intravenously administered lidocaine as cough depressant during general anesthesia for bronchography. Chest. 1973, 63: 427-429. 10.1378/chest.63.3.427.CrossRefPubMed Smith FR, Kundahl PC: Intravenously administered lidocaine as cough depressant during general anesthesia for bronchography. Chest. 1973, 63: 427-429. 10.1378/chest.63.3.427.CrossRefPubMed
9.
go back to reference Baraka A: IV lidocaine controls extubation laryngospasm in children. Anesth Analg. 1978, 57: 506-507.PubMed Baraka A: IV lidocaine controls extubation laryngospasm in children. Anesth Analg. 1978, 57: 506-507.PubMed
10.
go back to reference Oshima T, Kasuya Y, Okumura Y, Murakami T, Dohi S: Identification of independent risk factors for fentanyl-induced cough. Can J Anesth. 2006, 53: 753-758. 10.1007/BF03022790.CrossRefPubMed Oshima T, Kasuya Y, Okumura Y, Murakami T, Dohi S: Identification of independent risk factors for fentanyl-induced cough. Can J Anesth. 2006, 53: 753-758. 10.1007/BF03022790.CrossRefPubMed
11.
go back to reference Lui PW, Hsing CH, Chu YC: Terbutaline inhalation suppresses fentanyl-induced coughing. Can J Anaesth. 1996, 43: 1216-1219. 10.1007/BF03013427.CrossRefPubMed Lui PW, Hsing CH, Chu YC: Terbutaline inhalation suppresses fentanyl-induced coughing. Can J Anaesth. 1996, 43: 1216-1219. 10.1007/BF03013427.CrossRefPubMed
12.
go back to reference Yasuda I, Hirano T, Yusa T, Satoh M: Tracheal constriction by morphine and by fentanyl in man. Anesthesiology. 1978, 49: 117-119. 10.1097/00000542-197808000-00012.CrossRefPubMed Yasuda I, Hirano T, Yusa T, Satoh M: Tracheal constriction by morphine and by fentanyl in man. Anesthesiology. 1978, 49: 117-119. 10.1097/00000542-197808000-00012.CrossRefPubMed
14.
go back to reference Kamei et al: Fentanyl enhances the excitability of rapidly adapting receptors to cause cough via the enhancement of histamine release in the airways. Cough. 2013, 9: 3-10.1186/1745-9974-9-3.CrossRef Kamei et al: Fentanyl enhances the excitability of rapidly adapting receptors to cause cough via the enhancement of histamine release in the airways. Cough. 2013, 9: 3-10.1186/1745-9974-9-3.CrossRef
15.
go back to reference Stellato C, Cirillo R, de Paulis A, et al: Human basophil/mast cell releasability. IX. Heterogeneity of the effects of opioids on mediator release. Anesthesiology. 1992, 77: 932-940.PubMed Stellato C, Cirillo R, de Paulis A, et al: Human basophil/mast cell releasability. IX. Heterogeneity of the effects of opioids on mediator release. Anesthesiology. 1992, 77: 932-940.PubMed
16.
go back to reference Ricciardolo FL: Mechanisms of citric acid-induced bronchoconstriction. Am J Med. 2001, 111: 18S-24S.CrossRefPubMed Ricciardolo FL: Mechanisms of citric acid-induced bronchoconstriction. Am J Med. 2001, 111: 18S-24S.CrossRefPubMed
17.
go back to reference Warner MA, Hosking MP, Gray JR, Squillace DL, Yunginger JW, Orszulak TA: Narcotic-induced histamine release: a comparison of morphine, oxymorphone, and fentanyl infusions. J Cardiothorac Vasc Anesth. 1991, 5: 481-484. 10.1016/1053-0770(91)90123-B.CrossRefPubMed Warner MA, Hosking MP, Gray JR, Squillace DL, Yunginger JW, Orszulak TA: Narcotic-induced histamine release: a comparison of morphine, oxymorphone, and fentanyl infusions. J Cardiothorac Vasc Anesth. 1991, 5: 481-484. 10.1016/1053-0770(91)90123-B.CrossRefPubMed
18.
go back to reference Blunk JA, Schmelz M, Zeck S, Skov P, Likar R, Koppert W: Opioid-induced mast cell activation and vascular responses is not mediated by mu-opioid receptors: an in vivo microdialysis study in human skin. Anesth Analg. 2004, 98: 364-370.CrossRefPubMed Blunk JA, Schmelz M, Zeck S, Skov P, Likar R, Koppert W: Opioid-induced mast cell activation and vascular responses is not mediated by mu-opioid receptors: an in vivo microdialysis study in human skin. Anesth Analg. 2004, 98: 364-370.CrossRefPubMed
19.
go back to reference Pandey CK, Raza M, Ranjan R, et al: Intravenous lidocaine 0.5 mg.kg−1 effectively suppresses fentanyl-induced cough. Can J Anaesth. 2005, 52: 172-175. 10.1007/BF03027724.CrossRefPubMed Pandey CK, Raza M, Ranjan R, et al: Intravenous lidocaine 0.5 mg.kg−1 effectively suppresses fentanyl-induced cough. Can J Anaesth. 2005, 52: 172-175. 10.1007/BF03027724.CrossRefPubMed
20.
go back to reference Lin CS, Sun WZ, Chan WH, et al: Intravenous lidocaine and ephedrine, but not propofol, suppress fentanyl-induced cough. Can J Anaesth. 2004, 51: 654-659. 10.1007/BF03018421.CrossRefPubMed Lin CS, Sun WZ, Chan WH, et al: Intravenous lidocaine and ephedrine, but not propofol, suppress fentanyl-induced cough. Can J Anaesth. 2004, 51: 654-659. 10.1007/BF03018421.CrossRefPubMed
21.
go back to reference Coleridge HM, Coleridge JCG: Reflexes evoked from tracheobronchial tree and lungs. Handbook of Physiology. The Respiratory System. Control of Breathing. Edited by: Bethesda MD. 1986, Am. Physiol. Soc, 395-430. sect. 3, vol. II, pt. 1, chapt. 12 Coleridge HM, Coleridge JCG: Reflexes evoked from tracheobronchial tree and lungs. Handbook of Physiology. The Respiratory System. Control of Breathing. Edited by: Bethesda MD. 1986, Am. Physiol. Soc, 395-430. sect. 3, vol. II, pt. 1, chapt. 12
22.
go back to reference Lee LY, Pisarri TE: Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001, 125: 47-65. 10.1016/S0034-5687(00)00204-8.CrossRefPubMed Lee LY, Pisarri TE: Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001, 125: 47-65. 10.1016/S0034-5687(00)00204-8.CrossRefPubMed
23.
go back to reference Paintal AS: Vagal sensory receptors and their reflex effects. Physiol Rev. 1973, 53: 159-227.PubMed Paintal AS: Vagal sensory receptors and their reflex effects. Physiol Rev. 1973, 53: 159-227.PubMed
24.
go back to reference Yu J: Airway mechanosensors. Respir Physiol Neurobiol. 2005, 148: 217-243. 10.1016/j.resp.2004.12.007.CrossRefPubMed Yu J: Airway mechanosensors. Respir Physiol Neurobiol. 2005, 148: 217-243. 10.1016/j.resp.2004.12.007.CrossRefPubMed
25.
go back to reference Li H, et al: “Opposite responses to lidocaine between intrapulmonary mechanical and chemical sensors.” American Journal of Physiology-Regulatory, Integrative and Comparative. Physiology. 2009, 297 (3): R853-R858. Li H, et al: “Opposite responses to lidocaine between intrapulmonary mechanical and chemical sensors.” American Journal of Physiology-Regulatory, Integrative and Comparative. Physiology. 2009, 297 (3): R853-R858.
26.
go back to reference Poulton TJ, James FM: Cough suppression by lidocaine. Anesthesiology. 1979, 50: 470-472. 10.1097/00000542-197905000-00018.CrossRefPubMed Poulton TJ, James FM: Cough suppression by lidocaine. Anesthesiology. 1979, 50: 470-472. 10.1097/00000542-197905000-00018.CrossRefPubMed
27.
go back to reference Nishino T, Hiraga K, Sugimori K: Effects of IV lidocaine on airway reflexes elicited by irritation of the tracheal mucosa in humans anaesthetized with enflurane. Br J Anaesth. 1990, 64: 682-687. 10.1093/bja/64.6.682.CrossRefPubMed Nishino T, Hiraga K, Sugimori K: Effects of IV lidocaine on airway reflexes elicited by irritation of the tracheal mucosa in humans anaesthetized with enflurane. Br J Anaesth. 1990, 64: 682-687. 10.1093/bja/64.6.682.CrossRefPubMed
28.
go back to reference Kamei J, Nakanishi Y, Ishikawa Y, Hayashi SS, Asato M, Ohsawa M: Possible involvement of tetrodotoxin-resistant sodium channels in cough reflex. Eur J Pharmacol. 2011, 652: 117-120. 10.1016/j.ejphar.2010.11.019.CrossRefPubMed Kamei J, Nakanishi Y, Ishikawa Y, Hayashi SS, Asato M, Ohsawa M: Possible involvement of tetrodotoxin-resistant sodium channels in cough reflex. Eur J Pharmacol. 2011, 652: 117-120. 10.1016/j.ejphar.2010.11.019.CrossRefPubMed
29.
go back to reference Adcock JJ, Douglas GJ, Garabette M, Gascoigne M, Beatch G, Walker M, Page CP: RSD931, a novel antitussive agent acting on airway sensory nerves. Br J Pharmacol. 2003, 138: 407-416. 10.1038/sj.bjp.0705056.PubMedCentralCrossRefPubMed Adcock JJ, Douglas GJ, Garabette M, Gascoigne M, Beatch G, Walker M, Page CP: RSD931, a novel antitussive agent acting on airway sensory nerves. Br J Pharmacol. 2003, 138: 407-416. 10.1038/sj.bjp.0705056.PubMedCentralCrossRefPubMed
Metadata
Title
Intravenous lidocaine suppresses fentanyl-induced cough in Children
Authors
Agreta Gecaj-Gashi
Zorica Nikolova-Todorova
Vlora Ismaili-Jaha
Musli Gashi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cough / Issue 1/2013
Electronic ISSN: 1745-9974
DOI
https://doi.org/10.1186/1745-9974-9-20

Other articles of this Issue 1/2013

Cough 1/2013 Go to the issue