Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2008

Open Access 01-12-2008 | Research

l-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD)

Authors: Terje Sagvolden, Tong Xu

Published in: Behavioral and Brain Functions | Issue 1/2008

Login to get access

Abstract

Background

ADHD is currently defined as a cognitive/behavioral developmental disorder where all clinical criteria are behavioral. Overactivity, impulsiveness, and inattentiveness are presently regarded as the main clinical symptoms. There is no biological marker, but there is considerable evidence to suggest that ADHD behavior is associated with poor dopaminergic and noradrenergic modulation of neuronal circuits that involve the frontal lobes. The best validated animal model of ADHD, the Spontaneously Hypertensive Rat (SHR), shows pronounced overactivity, impulsiveness, and deficient sustained attention. While dopamine release is decreased in SHR, norepinephrine concentrations are elevated. The primary objective of the present research was to test effects of a range of doses of the catecholamine agonists d- and l-amphetamine on ADHD-like symptoms in SHR.

Methods

The present study tested behavioral effects of 0.64 to 1.91 mg/kg d-amphetamine; and 1.27 to 3.81 mg/kg l-amphetamine base/kg i.p. in male SHRs and their controls, the Wistar Kyoto rat (WKY). ADHD-like behavior was tested with a visual discrimination task measuring overactivity, impulsiveness and inattentiveness.

Results

The striking impulsiveness, overactivity, and poorer sustained attention during baseline conditions in the SHR were improved by treatment with the amphetamine isomers. The dose-response curves were, however, different for the different behaviors. Most significantly, d-amphetamine reduced overactivity and impulsiveness more efficiently than comparable doses of l-amphetamine. The lowest dose of d-amphetamine and low-to-medium doses of l-amphetamine improved sustained attention. The highest dose of d-amphetamine used interfered with SHR behavior. A second study showed that the impaired sustained attention (percent correct lever choice) in the SHR was not due to impaired visual functions or poorer working memory.

Discussion

The present results indicate that overactivity and impulsiveness may to some extent be associated with imbalances in neural circuits that differ from those causing poor sustained attention and that the two amphetamine isomers may affect the different neuromodulators differently. While d-amphetamine improved SHR overactivity, impulsiveness as well as sustained attention, the behavioral effects of l-amphetamine were relatively more specific for improving sustained attention than for the other 2 symptoms. Thus, while d- and l-amphetamine affect similar neuronal systems their relative potencies may be different.
Appendix
Available only for authorised users
Literature
1.
go back to reference Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4 Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4
2.
go back to reference Sagvolden T, Archer T: Future perspectives on ADD research -- An irresistible challenge. Attention deficit disorder: Clinical and basic research. Edited by: Sagvolden T and Archer T. 1989, Hillsdale, N.J., Lawrence Erlbaum Associates, 369-389. Sagvolden T, Archer T: Future perspectives on ADD research -- An irresistible challenge. Attention deficit disorder: Clinical and basic research. Edited by: Sagvolden T and Archer T. 1989, Hillsdale, N.J., Lawrence Erlbaum Associates, 369-389.
3.
go back to reference Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.CrossRefPubMed Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.CrossRefPubMed
4.
go back to reference Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28: 397-419. 10.1017/S0140525X05000075.CrossRefPubMed Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28: 397-419. 10.1017/S0140525X05000075.CrossRefPubMed
5.
go back to reference Johansen EB, Sagvolden T, Aase H, Russell VA: The dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD): Present status and future perspectives. Behav Brain Sci. 2005, 28: 451-454. 10.1017/S0140525X05430071.CrossRef Johansen EB, Sagvolden T, Aase H, Russell VA: The dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD): Present status and future perspectives. Behav Brain Sci. 2005, 28: 451-454. 10.1017/S0140525X05430071.CrossRef
6.
go back to reference Barkley RA: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997, 121: 65-94. 10.1037/0033-2909.121.1.65.CrossRefPubMed Barkley RA: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997, 121: 65-94. 10.1037/0033-2909.121.1.65.CrossRefPubMed
7.
go back to reference Tannock R: Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatry. 1998, 39: 65-99. 10.1017/S0021963097001777.CrossRefPubMed Tannock R: Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatry. 1998, 39: 65-99. 10.1017/S0021963097001777.CrossRefPubMed
8.
go back to reference Arnsten AF, Dudley AG: Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct. 2005, 1: 2-10.1186/1744-9081-1-2.PubMedCentralCrossRefPubMed Arnsten AF, Dudley AG: Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct. 2005, 1: 2-10.1186/1744-9081-1-2.PubMedCentralCrossRefPubMed
9.
10.
go back to reference Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907.PubMed Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907.PubMed
11.
go back to reference Arnsten AFT, Li BM: Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005, 57: 1377-1384. 10.1016/j.biopsych.2004.08.019.CrossRefPubMed Arnsten AFT, Li BM: Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005, 57: 1377-1384. 10.1016/j.biopsych.2004.08.019.CrossRefPubMed
12.
go back to reference Biederman J, Spencer T, Wilens T: Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int J Neuropharmacol. 2004, 7: 77-97. Biederman J, Spencer T, Wilens T: Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int J Neuropharmacol. 2004, 7: 77-97.
13.
go back to reference Banaschewski T, Roessner V, Dittmann RW, Santosh PJ, Rothenberger A: Non-stimulant medications in the treatment of ADHD. Eur Child Adolesc Psychiatry. 2004, 13: 102-116. 10.1007/s00787-004-1010-x.CrossRef Banaschewski T, Roessner V, Dittmann RW, Santosh PJ, Rothenberger A: Non-stimulant medications in the treatment of ADHD. Eur Child Adolesc Psychiatry. 2004, 13: 102-116. 10.1007/s00787-004-1010-x.CrossRef
14.
go back to reference Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G: Influence of methylphenidate on brain development - an update of recent animal experiments. Behav Brain Funct. 2006, 2: 2-10.1186/1744-9081-2-2.PubMedCentralCrossRefPubMed Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G: Influence of methylphenidate on brain development - an update of recent animal experiments. Behav Brain Funct. 2006, 2: 2-10.1186/1744-9081-2-2.PubMedCentralCrossRefPubMed
15.
go back to reference Easton N, Steward C, Marshall F, Fone K, Marsden C: Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007, 52: 405-414. 10.1016/j.neuropharm.2006.07.035.CrossRefPubMed Easton N, Steward C, Marshall F, Fone K, Marsden C: Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology. 2007, 52: 405-414. 10.1016/j.neuropharm.2006.07.035.CrossRefPubMed
16.
go back to reference Sagvolden T: The spontaneously hypertensive rat as a model of ADHD. Stimulant drugs and ADHD: Basic and clinical neuroscience. Edited by: Solanto MV, Arnsten AFT and Castellanos FX. 2001, New York, Oxford University Press, 221-237. Sagvolden T: The spontaneously hypertensive rat as a model of ADHD. Stimulant drugs and ADHD: Basic and clinical neuroscience. Edited by: Solanto MV, Arnsten AFT and Castellanos FX. 2001, New York, Oxford University Press, 221-237.
17.
go back to reference Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.CrossRefPubMed Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.CrossRefPubMed
18.
go back to reference Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.CrossRefPubMed Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.CrossRefPubMed
19.
go back to reference Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G: The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol. 1992, 58: 103-112. 10.1016/0163-1047(92)90315-U.CrossRefPubMed Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G: The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol. 1992, 58: 103-112. 10.1016/0163-1047(92)90315-U.CrossRefPubMed
20.
go back to reference Sagvolden T: The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct. 2006, 2: 41-10.1186/1744-9081-2-41.PubMedCentralCrossRefPubMed Sagvolden T: The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct. 2006, 2: 41-10.1186/1744-9081-2-41.PubMedCentralCrossRefPubMed
21.
go back to reference Wultz B, Sagvolden T, Moser EI, Moser MB: The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol. 1990, 53: 88-102. 10.1016/0163-1047(90)90848-Z.CrossRefPubMed Wultz B, Sagvolden T, Moser EI, Moser MB: The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol. 1990, 53: 88-102. 10.1016/0163-1047(90)90848-Z.CrossRefPubMed
22.
go back to reference Catania AC: Learning. 1998, N.J., Englewoods Cliffs, Prentice Hall, 4 Catania AC: Learning. 1998, N.J., Englewoods Cliffs, Prentice Hall, 4
23.
go back to reference Catania AC, Reynolds GS: A quantitative analysis of the responding maintained by interval schedules of reinforcement. J Exp Anal Behav. 1968, 11: Suppl:327-Suppl:383. 10.1901/jeab.1968.11-s327.CrossRef Catania AC, Reynolds GS: A quantitative analysis of the responding maintained by interval schedules of reinforcement. J Exp Anal Behav. 1968, 11: Suppl:327-Suppl:383. 10.1901/jeab.1968.11-s327.CrossRef
25.
go back to reference Grubbs F: Procedures for detecting outlying observations in samples. Technometrics. 1969, 11: 1-21. 10.2307/1266761.CrossRef Grubbs F: Procedures for detecting outlying observations in samples. Technometrics. 1969, 11: 1-21. 10.2307/1266761.CrossRef
26.
go back to reference Stefansky W: Rejecting outliers in factorial designs. Technometrics. 1972, 14: 469-479. 10.2307/1267436.CrossRef Stefansky W: Rejecting outliers in factorial designs. Technometrics. 1972, 14: 469-479. 10.2307/1267436.CrossRef
27.
go back to reference Spjotvoll E, Stoline MR: An extension of the T-method of multiple comparison to include the cases with unequal sample sizes. J Am Stat Assoc. 1973, 68: 975-978. 10.2307/2284534. Spjotvoll E, Stoline MR: An extension of the T-method of multiple comparison to include the cases with unequal sample sizes. J Am Stat Assoc. 1973, 68: 975-978. 10.2307/2284534.
28.
go back to reference Sleator EK, Ullman RK: Can a physician diagnose hyperactivity in the office?. Pediatrics. 1981, 67: 13-17.PubMed Sleator EK, Ullman RK: Can a physician diagnose hyperactivity in the office?. Pediatrics. 1981, 67: 13-17.PubMed
29.
go back to reference Sagvolden T, Aase H, Zeiner P, Berger DF: Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behav Brain Res. 1998, 94: 61-71. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed Sagvolden T, Aase H, Zeiner P, Berger DF: Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behav Brain Res. 1998, 94: 61-71. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed
30.
go back to reference Aase H, Sagvolden T: Infrequent, but not frequent, reinforcers produce more variable responding and deficient sustained attention in young children with attention-deficit/hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2006, 47: 457-471. 10.1111/j.1469-7610.2005.01468.x.CrossRefPubMed Aase H, Sagvolden T: Infrequent, but not frequent, reinforcers produce more variable responding and deficient sustained attention in young children with attention-deficit/hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2006, 47: 457-471. 10.1111/j.1469-7610.2005.01468.x.CrossRefPubMed
32.
go back to reference Aase H, Meyer A, Sagvolden T: Moment-to-moment dynamics of ADHD behaviour in South African children. Behav Brain Funct. 2006, 2: 11-10.1186/1744-9081-2-11.PubMedCentralCrossRefPubMed Aase H, Meyer A, Sagvolden T: Moment-to-moment dynamics of ADHD behaviour in South African children. Behav Brain Funct. 2006, 2: 11-10.1186/1744-9081-2-11.PubMedCentralCrossRefPubMed
33.
go back to reference Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.CrossRefPubMed Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.CrossRefPubMed
34.
go back to reference Sagvolden T, Pettersen MB, Larsen MC: Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav. 1993, 54: 1047-1055. 10.1016/0031-9384(93)90323-8.CrossRefPubMed Sagvolden T, Pettersen MB, Larsen MC: Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav. 1993, 54: 1047-1055. 10.1016/0031-9384(93)90323-8.CrossRefPubMed
35.
go back to reference Sagvolden T, Wultz B, Moser EI, Moser MB, Mørkrid L: Results from a comparative neuropsychological research program indicate altered reinforcement mechanisms in children with ADD. Attention deficit disorder: Clinical and basic research. Edited by: Sagvolden T and Archer T. 1989, Hillsdale, N.J., Lawrence Erlbaum Associates, 261-286. Sagvolden T, Wultz B, Moser EI, Moser MB, Mørkrid L: Results from a comparative neuropsychological research program indicate altered reinforcement mechanisms in children with ADD. Attention deficit disorder: Clinical and basic research. Edited by: Sagvolden T and Archer T. 1989, Hillsdale, N.J., Lawrence Erlbaum Associates, 261-286.
36.
go back to reference Sagvolden T, Sergeant JA: Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav Brain Res. 1998, 94: 1-10. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed Sagvolden T, Sergeant JA: Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav Brain Res. 1998, 94: 1-10. 10.1016/S0166-4328(97)00170-8.CrossRefPubMed
37.
go back to reference Diaz Heijtz R, Castellanos FX: Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct. 2006, 2: 18-10.1186/1744-9081-2-18.PubMedCentralCrossRefPubMed Diaz Heijtz R, Castellanos FX: Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct. 2006, 2: 18-10.1186/1744-9081-2-18.PubMedCentralCrossRefPubMed
38.
go back to reference Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.CrossRefPubMed Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.CrossRefPubMed
39.
go back to reference Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of Attention- Deficit Hyperactivity Disorder - the spontaneously hypertensive rat. Brain Res. 1995, 676: 343-351. 10.1016/0006-8993(95)00135-D.CrossRefPubMed Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of Attention- Deficit Hyperactivity Disorder - the spontaneously hypertensive rat. Brain Res. 1995, 676: 343-351. 10.1016/0006-8993(95)00135-D.CrossRefPubMed
40.
go back to reference Russell V, Allie S, Wiggins T: Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav Brain Res. 2000, 117: 69-74. 10.1016/S0166-4328(00)00291-6.CrossRefPubMed Russell V, Allie S, Wiggins T: Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav Brain Res. 2000, 117: 69-74. 10.1016/S0166-4328(00)00291-6.CrossRefPubMed
Metadata
Title
l-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD)
Authors
Terje Sagvolden
Tong Xu
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2008
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-4-3

Other articles of this Issue 1/2008

Behavioral and Brain Functions 1/2008 Go to the issue