Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Research

Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

Authors: Wayne B Anderson, Brett A Graham, Natalie J Beveridge, Paul A Tooney, Alan M Brichta, Robert J Callister

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

Background

Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood.

Methods and Results

Here we compare fast inhibitory synaptic transmission in mouse (P17-37) SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C). GlyR-mediated mIPSCs were detected in 74% (25/34) and 94% (25/27) of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18). Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each), decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms), and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz) in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18) and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz) in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms) in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8) and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11) in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA), had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM) reduced GlyR-mediated mIPSC frequency in SDH and DDH, but did not affect other properties. Similar results were observed for GABAAR mediated mIPSCs, however, rise time was slowed by methAEA in SDH neurons.

Conclusion

Together these data show that Gly- and GABAARs with clearly differing physiological properties and cannabinoid-sensitivity contribute to fast synaptic inhibition in mouse SDH and DDH.
Appendix
Available only for authorised users
Literature
1.
go back to reference Willis WD, Coggeshall RE: Sensory Mechanisms of the Spinal Cord. 3rd edition. New York: Kluwer Academic/Plenum Publishers; 2004.CrossRef Willis WD, Coggeshall RE: Sensory Mechanisms of the Spinal Cord. 3rd edition. New York: Kluwer Academic/Plenum Publishers; 2004.CrossRef
2.
go back to reference Todd AJ, Koerber HR: Neuroanatomical substrates of spinal nociception. In Wall and Melzack's Textbook of Pain. 5th edition. Edited by: McMahon SB, Koltzenburg M. Philadelphia: Elsevier Churchill Livingston; 2006:73–90.CrossRef Todd AJ, Koerber HR: Neuroanatomical substrates of spinal nociception. In Wall and Melzack's Textbook of Pain. 5th edition. Edited by: McMahon SB, Koltzenburg M. Philadelphia: Elsevier Churchill Livingston; 2006:73–90.CrossRef
3.
go back to reference Brown AG: The dorsal horn of the spinal cord. Q J Exp Physiol 1982, 67: 193–212.PubMed Brown AG: The dorsal horn of the spinal cord. Q J Exp Physiol 1982, 67: 193–212.PubMed
4.
go back to reference Light AR, Perl ER: Re-examination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 1979, 186: 117–131. 10.1002/cne.901860202PubMedCrossRef Light AR, Perl ER: Re-examination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 1979, 186: 117–131. 10.1002/cne.901860202PubMedCrossRef
5.
go back to reference Light AR, Perl ER: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979, 186: 133–150. 10.1002/cne.901860203PubMedCrossRef Light AR, Perl ER: Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979, 186: 133–150. 10.1002/cne.901860203PubMedCrossRef
6.
go back to reference Christensen BN, Perl ER: Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 1970, 33: 293–307.PubMed Christensen BN, Perl ER: Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 1970, 33: 293–307.PubMed
7.
go back to reference Sugiura Y, Lee CL, Perl ER: Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234: 358–361. 10.1126/science.3764416PubMedCrossRef Sugiura Y, Lee CL, Perl ER: Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986, 234: 358–361. 10.1126/science.3764416PubMedCrossRef
8.
go back to reference Tuckett RP, Wei JY: Response to an itch-producing substance in cat. I. Cutaneous receptor populations with myelinated axons. Brain Res 1987, 413: 87–94. 10.1016/0006-8993(87)90156-9PubMedCrossRef Tuckett RP, Wei JY: Response to an itch-producing substance in cat. I. Cutaneous receptor populations with myelinated axons. Brain Res 1987, 413: 87–94. 10.1016/0006-8993(87)90156-9PubMedCrossRef
9.
go back to reference Tuckett RP, Wei JY: Response to an itch-producing substance in cat. II. Cutaneous receptor populations with unmyelinated axons. Brain Res 1987, 413: 95–103. 10.1016/0006-8993(87)90157-0PubMedCrossRef Tuckett RP, Wei JY: Response to an itch-producing substance in cat. II. Cutaneous receptor populations with unmyelinated axons. Brain Res 1987, 413: 95–103. 10.1016/0006-8993(87)90157-0PubMedCrossRef
10.
go back to reference Vallbo AB, Olausson H, Wessberg J: Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 1999, 81: 2753–2763.PubMed Vallbo AB, Olausson H, Wessberg J: Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 1999, 81: 2753–2763.PubMed
11.
go back to reference Koerber HR, Woodbury CJ: Comprehensive phenotyping of sensory neurons using an ex vivo somatosensory system. Physiol Behav 2002, 77: 589–594. 10.1016/S0031-9384(02)00904-6PubMedCrossRef Koerber HR, Woodbury CJ: Comprehensive phenotyping of sensory neurons using an ex vivo somatosensory system. Physiol Behav 2002, 77: 589–594. 10.1016/S0031-9384(02)00904-6PubMedCrossRef
12.
go back to reference Koerber HR, Brown PB: Quantitative analysis of dorsal horn cell receptive fields following limited deafferentation. J Neurophysiol 1995, 74: 2065–2076.PubMed Koerber HR, Brown PB: Quantitative analysis of dorsal horn cell receptive fields following limited deafferentation. J Neurophysiol 1995, 74: 2065–2076.PubMed
13.
go back to reference Woolf CJ: Central terminations of cutaneous mechanoreceptive afferents in the rat lumbar spinal cord. J Comp Neurol 1987, 261: 105–119. 10.1002/cne.902610109PubMedCrossRef Woolf CJ: Central terminations of cutaneous mechanoreceptive afferents in the rat lumbar spinal cord. J Comp Neurol 1987, 261: 105–119. 10.1002/cne.902610109PubMedCrossRef
14.
go back to reference Craig ADB: Pain mechanisms: labeled lines versus convergence in central processing. Ann Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMedCrossRef Craig ADB: Pain mechanisms: labeled lines versus convergence in central processing. Ann Rev Neurosci 2003, 26: 1–30. 10.1146/annurev.neuro.26.041002.131022PubMedCrossRef
15.
go back to reference Klop EM, Mouton LJ, Hulsebosch R, Boers J, Holstege G: In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 2005, 134: 189–197. 10.1016/j.neuroscience.2005.03.035PubMedCrossRef Klop EM, Mouton LJ, Hulsebosch R, Boers J, Holstege G: In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 2005, 134: 189–197. 10.1016/j.neuroscience.2005.03.035PubMedCrossRef
16.
go back to reference Kobayashi Y: Distribution and morphology of spinothalamic tract neurons in the rat. Anat Embryol (Berl) 1998, 197: 51–67. 10.1007/s004290050119CrossRef Kobayashi Y: Distribution and morphology of spinothalamic tract neurons in the rat. Anat Embryol (Berl) 1998, 197: 51–67. 10.1007/s004290050119CrossRef
17.
go back to reference Willis WD Jr, Zhang X, Honda CN, Giesler GJ Jr: Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 2001, 92: 267–276. 10.1016/S0304-3959(01)00268-8PubMedCrossRef Willis WD Jr, Zhang X, Honda CN, Giesler GJ Jr: Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 2001, 92: 267–276. 10.1016/S0304-3959(01)00268-8PubMedCrossRef
18.
go back to reference Lu Y, Perl ER: A Specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 2003, 23: 8752–8758.PubMed Lu Y, Perl ER: A Specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 2003, 23: 8752–8758.PubMed
19.
go back to reference Lu Y, Perl ER: Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 2005, 25: 3900–3907. 10.1523/JNEUROSCI.0102-05.2005PubMedCrossRef Lu Y, Perl ER: Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 2005, 25: 3900–3907. 10.1523/JNEUROSCI.0102-05.2005PubMedCrossRef
20.
go back to reference Schneider SP: Local circuit connections between hamster laminae III and IV dorsal horn neurons. J Neurophysiol 2008, 99: 1306–1318. 10.1152/jn.00962.2007PubMedCrossRef Schneider SP: Local circuit connections between hamster laminae III and IV dorsal horn neurons. J Neurophysiol 2008, 99: 1306–1318. 10.1152/jn.00962.2007PubMedCrossRef
21.
go back to reference Cronin JN, Bradbury EJ, Lidierth M: Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 2004, 112: 156–163. 10.1016/j.pain.2004.08.010PubMedCrossRef Cronin JN, Bradbury EJ, Lidierth M: Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 2004, 112: 156–163. 10.1016/j.pain.2004.08.010PubMedCrossRef
22.
go back to reference Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887. 10.1126/science.1094925PubMedCrossRef Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U: GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887. 10.1126/science.1094925PubMedCrossRef
23.
go back to reference Gilbert PE: A comparison of THC, nantradol, nabilone, and morphine in the chronic spinal dog. J Clin Pharmacol 1981, 21: 311S-319S.PubMedCrossRef Gilbert PE: A comparison of THC, nantradol, nabilone, and morphine in the chronic spinal dog. J Clin Pharmacol 1981, 21: 311S-319S.PubMedCrossRef
24.
go back to reference Smith PB, Martin BR: Spinal mechanisms of delta 9-tetrahydrocannabinol-induced analgesia. Brain Res 1992, 578: 8–12. 10.1016/0006-8993(92)90222-UPubMedCrossRef Smith PB, Martin BR: Spinal mechanisms of delta 9-tetrahydrocannabinol-induced analgesia. Brain Res 1992, 578: 8–12. 10.1016/0006-8993(92)90222-UPubMedCrossRef
25.
go back to reference Farquhar-Smith WP, Egertova M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR: Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci 2000, 15: 510–521. 10.1006/mcne.2000.0844PubMedCrossRef Farquhar-Smith WP, Egertova M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR: Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci 2000, 15: 510–521. 10.1006/mcne.2000.0844PubMedCrossRef
26.
go back to reference Richardson JD, Aanonsen L, Hargreaves KM: Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J Neurosci 1998, 18: 451–457.PubMed Richardson JD, Aanonsen L, Hargreaves KM: Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J Neurosci 1998, 18: 451–457.PubMed
27.
go back to reference Shen M, Piser TM, Seybold VS, Thayer SA: Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 1996, 16: 4322–4334.PubMed Shen M, Piser TM, Seybold VS, Thayer SA: Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 1996, 16: 4322–4334.PubMed
28.
go back to reference Lichtman AH, Martin BR: Cannabinoid-induced antinociception is mediated by a spinal alpha 2-noradrenergic mechanism. Brain Res 1991, 559: 309–314. 10.1016/0006-8993(91)90017-PPubMedCrossRef Lichtman AH, Martin BR: Cannabinoid-induced antinociception is mediated by a spinal alpha 2-noradrenergic mechanism. Brain Res 1991, 559: 309–314. 10.1016/0006-8993(91)90017-PPubMedCrossRef
29.
go back to reference Pugh G Jr, Smith PB, Dombrowski DS, Welch SP: The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. J Pharmacol Exp Ther 1996, 279: 608–616.PubMed Pugh G Jr, Smith PB, Dombrowski DS, Welch SP: The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. J Pharmacol Exp Ther 1996, 279: 608–616.PubMed
30.
go back to reference Reche I, Fuentes JA, Ruiz-Gayo M: A role for central cannabinoid and opioid systems in peripheral delta 9-tetrahydrocannabinol-induced analgesia in mice. Eur J Pharmacol 1996, 301: 75–81. 10.1016/0014-2999(96)00045-3PubMedCrossRef Reche I, Fuentes JA, Ruiz-Gayo M: A role for central cannabinoid and opioid systems in peripheral delta 9-tetrahydrocannabinol-induced analgesia in mice. Eur J Pharmacol 1996, 301: 75–81. 10.1016/0014-2999(96)00045-3PubMedCrossRef
31.
go back to reference Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L: Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 2006, 69: 991–997.PubMed Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L: Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 2006, 69: 991–997.PubMed
32.
go back to reference Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N: Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci 2005, 25: 7499–7506. 10.1523/JNEUROSCI.0977-05.2005PubMedCrossRef Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N: Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci 2005, 25: 7499–7506. 10.1523/JNEUROSCI.0977-05.2005PubMedCrossRef
33.
go back to reference Walsh MA, Graham BA, Brichta AM, Callister RJ: Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. J Neurophysiol 2009, 101: 1800–1812. 10.1152/jn.90755.2008PubMedCrossRef Walsh MA, Graham BA, Brichta AM, Callister RJ: Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. J Neurophysiol 2009, 101: 1800–1812. 10.1152/jn.90755.2008PubMedCrossRef
34.
go back to reference Bekkers JM, Stevens CF: NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 1989, 341: 230–233. 10.1038/341230a0PubMedCrossRef Bekkers JM, Stevens CF: NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 1989, 341: 230–233. 10.1038/341230a0PubMedCrossRef
35.
go back to reference Graham BA, Brichta AM, Schofield PR, Callister RJ: Altered potassium channel function in the superficial dorsal horn of the spastic mouse. J Physiol (Lond) 2007, 584: 121–136. 10.1113/jphysiol.2007.138198CrossRef Graham BA, Brichta AM, Schofield PR, Callister RJ: Altered potassium channel function in the superficial dorsal horn of the spastic mouse. J Physiol (Lond) 2007, 584: 121–136. 10.1113/jphysiol.2007.138198CrossRef
36.
go back to reference Franklin KBJ, Paxinos G: Mouse Brain in Stereotaxic Coordinates. 3rd edition. San Deigo: Academic Press; 1997. Franklin KBJ, Paxinos G: Mouse Brain in Stereotaxic Coordinates. 3rd edition. San Deigo: Academic Press; 1997.
37.
go back to reference Clements JD, Bekkers JM: Detection of spontaneous synaptic events with an optimally scaled template. Biophys J 1997, 73: 220–229. 10.1016/S0006-3495(97)78062-7PubMedCentralPubMedCrossRef Clements JD, Bekkers JM: Detection of spontaneous synaptic events with an optimally scaled template. Biophys J 1997, 73: 220–229. 10.1016/S0006-3495(97)78062-7PubMedCentralPubMedCrossRef
38.
go back to reference Callister RJ, Walmsley B: Amplitude and time course of evoked and spontaneous synaptic currents in rat submandibular ganglion cells. J Physiol (Lond) 1996, 490: 149–157.CrossRef Callister RJ, Walmsley B: Amplitude and time course of evoked and spontaneous synaptic currents in rat submandibular ganglion cells. J Physiol (Lond) 1996, 490: 149–157.CrossRef
39.
go back to reference Graham BA, Schofield PR, Sah P, Callister RJ: Altered inhibitory synaptic transmission in superficial dorsal horn neurones in spastic and oscillator mice. J Physiol (Lond) 2003, 551: 905–916. 10.1113/jphysiol.2003.049064CrossRef Graham BA, Schofield PR, Sah P, Callister RJ: Altered inhibitory synaptic transmission in superficial dorsal horn neurones in spastic and oscillator mice. J Physiol (Lond) 2003, 551: 905–916. 10.1113/jphysiol.2003.049064CrossRef
40.
go back to reference Traynelis SF, Silver RA, Cull-Candy SG: Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 1993, 11: 279–289. 10.1016/0896-6273(93)90184-SPubMedCrossRef Traynelis SF, Silver RA, Cull-Candy SG: Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 1993, 11: 279–289. 10.1016/0896-6273(93)90184-SPubMedCrossRef
41.
go back to reference Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ: Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008, 17: 1156–1168. 10.1093/hmg/ddn005PubMedCrossRef Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ: Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008, 17: 1156–1168. 10.1093/hmg/ddn005PubMedCrossRef
42.
go back to reference Molander C, Xu Q, Grant G: The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 1984, 230: 133–141. 10.1002/cne.902300112PubMedCrossRef Molander C, Xu Q, Grant G: The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 1984, 230: 133–141. 10.1002/cne.902300112PubMedCrossRef
43.
go back to reference Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952, 96: 414–495. 10.1002/cne.900960303PubMed Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952, 96: 414–495. 10.1002/cne.900960303PubMed
44.
go back to reference Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N: Glycine Receptors in CNS Neurons as a Target for Nonretrograde Action of Cannabinoids. J Neurosci 2005, 25: 7499–7506. 10.1523/JNEUROSCI.0977-05.2005PubMedCrossRef Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N: Glycine Receptors in CNS Neurons as a Target for Nonretrograde Action of Cannabinoids. J Neurosci 2005, 25: 7499–7506. 10.1523/JNEUROSCI.0977-05.2005PubMedCrossRef
45.
go back to reference Chery N, Yu XH, de Koninck Y: Visualization of lamina I of the dorsal horn in live adult rat spinal cord slices. J Neurosci Methods 2000, 96: 133–142. 10.1016/S0165-0270(99)00195-8PubMedCrossRef Chery N, Yu XH, de Koninck Y: Visualization of lamina I of the dorsal horn in live adult rat spinal cord slices. J Neurosci Methods 2000, 96: 133–142. 10.1016/S0165-0270(99)00195-8PubMedCrossRef
46.
go back to reference Todd AJ, Sullivan AC: Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 1990, 296: 496–505. 10.1002/cne.902960312PubMedCrossRef Todd AJ, Sullivan AC: Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 1990, 296: 496–505. 10.1002/cne.902960312PubMedCrossRef
47.
go back to reference Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM: Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 2005, 482: 123–141. 10.1002/cne.20349PubMedCrossRef Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM: Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 2005, 482: 123–141. 10.1002/cne.20349PubMedCrossRef
48.
go back to reference Zeilhofer HU: The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035. 10.1007/s00018-005-5107-2PubMedCrossRef Zeilhofer HU: The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035. 10.1007/s00018-005-5107-2PubMedCrossRef
49.
go back to reference Mackie M, Hughes DI, Maxwell DJ, Tillakaratne NJ, Todd AJ: Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience 2003, 119: 461–472. 10.1016/S0306-4522(03)00174-XPubMedCrossRef Mackie M, Hughes DI, Maxwell DJ, Tillakaratne NJ, Todd AJ: Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience 2003, 119: 461–472. 10.1016/S0306-4522(03)00174-XPubMedCrossRef
50.
go back to reference Inquimbert P, Rodeau JL, Schlichter R: Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord. Eur J Neurosci 2007, 26: 2940–2949. 10.1111/j.1460-9568.2007.05919.xPubMedCrossRef Inquimbert P, Rodeau JL, Schlichter R: Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord. Eur J Neurosci 2007, 26: 2940–2949. 10.1111/j.1460-9568.2007.05919.xPubMedCrossRef
51.
go back to reference Baccei ML, Fitzgerald M: Development of GABAergic and Glycinergic Transmission in the Neonatal Rat Dorsal Horn. J Neurosci 2004, 24: 4749–4757. 10.1523/JNEUROSCI.5211-03.2004PubMedCrossRef Baccei ML, Fitzgerald M: Development of GABAergic and Glycinergic Transmission in the Neonatal Rat Dorsal Horn. J Neurosci 2004, 24: 4749–4757. 10.1523/JNEUROSCI.5211-03.2004PubMedCrossRef
52.
go back to reference Graham BA, Schofield PR, Sah P, Margrie TW, Callister RJ: Distinct Physiological Mechanisms Underlie Altered Glycinergic Synaptic Transmission in the Murine Mutants spastic, spasmodic, and oscillator. J Neurosci 2006, 26: 4880–4890. 10.1523/JNEUROSCI.3991-05.2006PubMedCrossRef Graham BA, Schofield PR, Sah P, Margrie TW, Callister RJ: Distinct Physiological Mechanisms Underlie Altered Glycinergic Synaptic Transmission in the Murine Mutants spastic, spasmodic, and oscillator. J Neurosci 2006, 26: 4880–4890. 10.1523/JNEUROSCI.3991-05.2006PubMedCrossRef
53.
go back to reference Singer JH, Talley EM, Bayliss DA, Berger AJ: Development of glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 1998, 80: 2608–2620.PubMed Singer JH, Talley EM, Bayliss DA, Berger AJ: Development of glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 1998, 80: 2608–2620.PubMed
54.
go back to reference Chery N, de Koninck Y: Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 1999, 19: 7342–7355.PubMed Chery N, de Koninck Y: Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci 1999, 19: 7342–7355.PubMed
55.
go back to reference Takahashi T, Momiyama A: Single-channel currents underlying glycinergic inhibitory postsynaptic responses in spinal neurons. Neuron 1991, 7: 965–969. 10.1016/0896-6273(91)90341-VPubMedCrossRef Takahashi T, Momiyama A: Single-channel currents underlying glycinergic inhibitory postsynaptic responses in spinal neurons. Neuron 1991, 7: 965–969. 10.1016/0896-6273(91)90341-VPubMedCrossRef
56.
go back to reference Lim R, Alvarez FJ, Walmsley B: Quantal size is correlated with receptor cluster area at glycinergic synapses in the rat brainstem. J Physiol (Lond) 1999,516(Pt 2):505–512. 10.1111/j.1469-7793.1999.0505v.xCrossRef Lim R, Alvarez FJ, Walmsley B: Quantal size is correlated with receptor cluster area at glycinergic synapses in the rat brainstem. J Physiol (Lond) 1999,516(Pt 2):505–512. 10.1111/j.1469-7793.1999.0505v.xCrossRef
57.
go back to reference Bohlhalter S, Weinmann O, Mohler H, Fritschy J: Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 1996, 16: 283–297.PubMed Bohlhalter S, Weinmann O, Mohler H, Fritschy J: Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 1996, 16: 283–297.PubMed
58.
go back to reference Bosman LW, Heinen K, Spijker S, Brussaard AB: Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood. J Neurophysiol 2005, 94: 338–346. 10.1152/jn.00084.2005PubMedCrossRef Bosman LW, Heinen K, Spijker S, Brussaard AB: Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood. J Neurophysiol 2005, 94: 338–346. 10.1152/jn.00084.2005PubMedCrossRef
59.
go back to reference Brussaard AB, Kits KS, Baker RE, Willems WP, Leyting-Vermeulen JW, Voorn P, Smit AB, Bicknell RJ, Herbison AE: Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression. Neuron 1997, 19: 1103–1114. 10.1016/S0896-6273(00)80401-8PubMedCrossRef Brussaard AB, Kits KS, Baker RE, Willems WP, Leyting-Vermeulen JW, Voorn P, Smit AB, Bicknell RJ, Herbison AE: Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression. Neuron 1997, 19: 1103–1114. 10.1016/S0896-6273(00)80401-8PubMedCrossRef
60.
go back to reference Legendre P: The glycinergic inhibitory synapse. Cell Mol Life Sci 2001, 58: 760–793. 10.1007/PL00000899PubMedCrossRef Legendre P: The glycinergic inhibitory synapse. Cell Mol Life Sci 2001, 58: 760–793. 10.1007/PL00000899PubMedCrossRef
61.
go back to reference Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004, 84: 1051–1095. 10.1152/physrev.00042.2003PubMedCrossRef Lynch JW: Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004, 84: 1051–1095. 10.1152/physrev.00042.2003PubMedCrossRef
62.
go back to reference Morisset V, Urban L: Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol 2001, 86: 40–48.PubMed Morisset V, Urban L: Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. J Neurophysiol 2001, 86: 40–48.PubMed
63.
go back to reference Twitchell W, Brown S, Mackie K: Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 1997, 78: 43–50.PubMed Twitchell W, Brown S, Mackie K: Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 1997, 78: 43–50.PubMed
64.
go back to reference Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF: Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999, 19: 4544–4558.PubMed Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF: Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999, 19: 4544–4558.PubMed
65.
go back to reference Schlicker E, Kathmann M: Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001, 22: 565–572. 10.1016/S0165-6147(00)01805-8PubMedCrossRef Schlicker E, Kathmann M: Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001, 22: 565–572. 10.1016/S0165-6147(00)01805-8PubMedCrossRef
66.
go back to reference Vaughan CW, Christie MJ: Retrograde signalling by endocannabinoids. Handb Exp Pharmacol 2005, 367–383. full_text Vaughan CW, Christie MJ: Retrograde signalling by endocannabinoids. Handb Exp Pharmacol 2005, 367–383. full_text
67.
go back to reference Salio C, Fischer J, Franzoni MF, Conrath M: Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 2002, 110: 755–764. 10.1016/S0306-4522(01)00584-XPubMedCrossRef Salio C, Fischer J, Franzoni MF, Conrath M: Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 2002, 110: 755–764. 10.1016/S0306-4522(01)00584-XPubMedCrossRef
68.
go back to reference Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMedCrossRef Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989, 37: 111–123. 10.1016/0304-3959(89)90160-7PubMedCrossRef
69.
go back to reference Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed Sivilotti L, Woolf CJ: The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed
70.
go back to reference Jennings EA, Vaughan CW, Roberts LA, Christie MJ: The actions of anandamide on rat superficial medullary dorsal horn neurons in vitro. J Physiol (Lond) 2003, 548: 121–129. 10.1113/jphysiol.2002.035063CrossRef Jennings EA, Vaughan CW, Roberts LA, Christie MJ: The actions of anandamide on rat superficial medullary dorsal horn neurons in vitro. J Physiol (Lond) 2003, 548: 121–129. 10.1113/jphysiol.2002.035063CrossRef
71.
go back to reference Santos SFA, Rebelo S, Derkach VA, Safronov BV: Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol (Lond) 2007, 581: 241–254. 10.1113/jphysiol.2006.126912CrossRef Santos SFA, Rebelo S, Derkach VA, Safronov BV: Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol (Lond) 2007, 581: 241–254. 10.1113/jphysiol.2006.126912CrossRef
72.
go back to reference Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef Graham BA, Brichta AM, Callister RJ: Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 2007, 98: 1057–1063. 10.1152/jn.00581.2007PubMedCrossRef
73.
go back to reference Yang Z, Aubrey KR, Alroy I, Harvey RJ, Vandenberg RJ, Lynch JW: Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochem Pharmacol 2008, 76: 1014–1023. 10.1016/j.bcp.2008.07.037PubMedCrossRef Yang Z, Aubrey KR, Alroy I, Harvey RJ, Vandenberg RJ, Lynch JW: Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. Biochem Pharmacol 2008, 76: 1014–1023. 10.1016/j.bcp.2008.07.037PubMedCrossRef
74.
go back to reference Diana MA, Levenes C, Mackie K, Marty A: Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci 2002, 22: 200–208.PubMed Diana MA, Levenes C, Mackie K, Marty A: Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci 2002, 22: 200–208.PubMed
75.
go back to reference Haefely W, Kulcsar A, Mohler H, Pieri L, Polc P, Schaffner R: Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 1975, 131–151. Haefely W, Kulcsar A, Mohler H, Pieri L, Polc P, Schaffner R: Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 1975, 131–151.
76.
go back to reference Lin LH, Whiting P, Harris RA: Molecular determinants of general anesthetic action: role of GABAA receptor structure. J Neurochem 1993, 60: 1548–1553. 10.1111/j.1471-4159.1993.tb03320.xPubMedCrossRef Lin LH, Whiting P, Harris RA: Molecular determinants of general anesthetic action: role of GABAA receptor structure. J Neurochem 1993, 60: 1548–1553. 10.1111/j.1471-4159.1993.tb03320.xPubMedCrossRef
77.
go back to reference Soldo BL, Proctor WR, Dunwiddie TV: Ethanol differentially modulates GABAA receptor-mediated chloride currents in hippocampal, cortical, and septal neurons in rat brain slices. Synapse 1994, 18: 94–103. 10.1002/syn.890180204PubMedCrossRef Soldo BL, Proctor WR, Dunwiddie TV: Ethanol differentially modulates GABAA receptor-mediated chloride currents in hippocampal, cortical, and septal neurons in rat brain slices. Synapse 1994, 18: 94–103. 10.1002/syn.890180204PubMedCrossRef
78.
go back to reference Belelli D, Lambert JJ: Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005, 6: 565–575. 10.1038/nrn1703PubMedCrossRef Belelli D, Lambert JJ: Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005, 6: 565–575. 10.1038/nrn1703PubMedCrossRef
79.
go back to reference Hosie AM, Dunne EL, Harvey RJ, Smart TG: Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 2003, 6: 362–369. 10.1038/nn1030PubMedCrossRef Hosie AM, Dunne EL, Harvey RJ, Smart TG: Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 2003, 6: 362–369. 10.1038/nn1030PubMedCrossRef
80.
go back to reference Sivilotti L, Woolf CJ: The contribution of GABA(A) and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed Sivilotti L, Woolf CJ: The contribution of GABA(A) and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994, 72: 169–179.PubMed
81.
go back to reference Kontinen VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic evidence for increased endogenous gabaergic but not glycinergic inhibitory tone in the rat spinal nerve ligation model of neuropathy. Anesthesiology 2001, 94: 333–339. 10.1097/00000542-200102000-00024PubMedCrossRef Kontinen VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic evidence for increased endogenous gabaergic but not glycinergic inhibitory tone in the rat spinal nerve ligation model of neuropathy. Anesthesiology 2001, 94: 333–339. 10.1097/00000542-200102000-00024PubMedCrossRef
82.
go back to reference Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.PubMed
83.
go back to reference Ruscheweyh R, Sandkuhler J: Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. Eur J Neurosci 2005, 22: 1967–1976. 10.1111/j.1460-9568.2005.04393.xPubMedCrossRef Ruscheweyh R, Sandkuhler J: Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. Eur J Neurosci 2005, 22: 1967–1976. 10.1111/j.1460-9568.2005.04393.xPubMedCrossRef
Metadata
Title
Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons
Authors
Wayne B Anderson
Brett A Graham
Natalie J Beveridge
Paul A Tooney
Alan M Brichta
Robert J Callister
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-65

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue