Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Short report

In vivo evidence that truncated trkB.T1 participates in nociception

Authors: Cynthia L Renn, Carmen C Leitch, Susan G Dorsey

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception. In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a widely-expressed alternatively-spliced truncated isoform, trkB.T1. TrkB.T1 binds BDNF with high affinity; however the unique 11 amino acid intracellular cytoplasmic tail lacks the kinase domain of trkB.FL. Recently, trkB.T1 was shown to be specifically up-regulated in a model of HIV-associated neuropathic pain, potentially implicating trkB.T1 as a modulator of nociception. Here, we report that trkB.T1 mRNA and protein is up-regulated in the spinal dorsal horn at times following antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop. While genetic depletion of trkB.T1 did not affect baseline mechanical and thermal thresholds, the absence of trkB.T1 resulted in significant attenuation of inflammation- and antiretroviral-induced nocifensive behaviors. Our results suggest that trkB.T1 up-regulation following antiretroviral treatment and tissue inflammation participates in the development and maintenance of nocifensive behavior and may represent a novel therapeutic target for pain treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thompson SW, Bennett DL, Kerr BJ, Bradbury EF, McMahon SB: Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci USA 1999, 96: 7714–7718.PubMedCentralPubMedCrossRef Thompson SW, Bennett DL, Kerr BJ, Bradbury EF, McMahon SB: Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci USA 1999, 96: 7714–7718.PubMedCentralPubMedCrossRef
2.
go back to reference Miletic G, Miletic V: Increases in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci Lett 2002, 319: 137–140.PubMedCrossRef Miletic G, Miletic V: Increases in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci Lett 2002, 319: 137–140.PubMedCrossRef
3.
go back to reference McMahon SB, Cafferty WB: Neurotrophic influences on neuropathic pain. Novartis Found Symp 2004, 261: 68–92.PubMedCrossRef McMahon SB, Cafferty WB: Neurotrophic influences on neuropathic pain. Novartis Found Symp 2004, 261: 68–92.PubMedCrossRef
4.
go back to reference Pezet S, McMahon SB: Neurotrophins: Mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–538.PubMedCrossRef Pezet S, McMahon SB: Neurotrophins: Mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–538.PubMedCrossRef
5.
go back to reference Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV: Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 1999, 11: 3539–3551.PubMedCrossRef Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV: Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 1999, 11: 3539–3551.PubMedCrossRef
6.
go back to reference Ha SO, Kim JK, Hong HS, Kim DS, Cho HJ: Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience 2001, 107: 301–309.PubMedCrossRef Ha SO, Kim JK, Hong HS, Kim DS, Cho HJ: Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience 2001, 107: 301–309.PubMedCrossRef
7.
go back to reference Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB: Noxious stimulation induces trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 2002, 21: 684–695.PubMedCrossRef Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB: Noxious stimulation induces trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 2002, 21: 684–695.PubMedCrossRef
8.
go back to reference Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, DeKoninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.PubMedCrossRef Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, DeKoninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.PubMedCrossRef
9.
go back to reference Li L, Xian CJ, Zhong JH, Zhou XF: Upregulation of brain-derived neurotrophic factor in the sensory pathway by selective motor nerve injury in adult rats. Neurotox Res 2006, 9: 269–283.PubMedCrossRef Li L, Xian CJ, Zhong JH, Zhou XF: Upregulation of brain-derived neurotrophic factor in the sensory pathway by selective motor nerve injury in adult rats. Neurotox Res 2006, 9: 269–283.PubMedCrossRef
10.
go back to reference Guo W, Robbins MT, Wei F, Zhou S, Dubner R, Ren K: Supraspinal brain-derived neurotrophic factor signaling: A novel mechanism for descending pain faciliatation. J Neurosci 2006, 26: 126–137.PubMedCrossRef Guo W, Robbins MT, Wei F, Zhou S, Dubner R, Ren K: Supraspinal brain-derived neurotrophic factor signaling: A novel mechanism for descending pain faciliatation. J Neurosci 2006, 26: 126–137.PubMedCrossRef
11.
go back to reference Renn CL, Lin L, Thomas S, Dorsey SG: Full-length tropomyosin-related kinase B expression in the brainstem in response to persistent inflammatory pain. NeuroReport 2006, 17: 1175–1179.PubMedCrossRef Renn CL, Lin L, Thomas S, Dorsey SG: Full-length tropomyosin-related kinase B expression in the brainstem in response to persistent inflammatory pain. NeuroReport 2006, 17: 1175–1179.PubMedCrossRef
12.
go back to reference Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T: Involvement of a spinal brain-derived neurotrophic factor/full-length trkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res 2002, 958: 338–346.PubMedCrossRef Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T: Involvement of a spinal brain-derived neurotrophic factor/full-length trkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res 2002, 958: 338–346.PubMedCrossRef
13.
go back to reference Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW, Zhang C, Johnson NM, England PM, Shokat KM, Ginty DD: A chemical-genetic approach to studying neurotrophin signaling. Neuron 2005, 46: 13–21.PubMedCrossRef Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW, Zhang C, Johnson NM, England PM, Shokat KM, Ginty DD: A chemical-genetic approach to studying neurotrophin signaling. Neuron 2005, 46: 13–21.PubMedCrossRef
14.
go back to reference Wang X, Ratnam J, Zou B, England PM, Basbaum AI: TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci 2009, 29: 5508–5515.PubMedCentralPubMedCrossRef Wang X, Ratnam J, Zou B, England PM, Basbaum AI: TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci 2009, 29: 5508–5515.PubMedCentralPubMedCrossRef
15.
go back to reference Middlemas DS, Lindberg RA, Hunter T: TrkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol Cell Biol 1991, 11: 143–153.PubMedCentralPubMed Middlemas DS, Lindberg RA, Hunter T: TrkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol Cell Biol 1991, 11: 143–153.PubMedCentralPubMed
16.
go back to reference Biffo S, Offenhauser N, Carter BD, Barde YA: Selective binding and internalization by truncated receptors restrict the availability of BDNF during development. Development 1995, 121: 2462–2470. Biffo S, Offenhauser N, Carter BD, Barde YA: Selective binding and internalization by truncated receptors restrict the availability of BDNF during development. Development 1995, 121: 2462–2470.
17.
go back to reference Eide FF, Vinig ER, Eide BL, Zang K, Wang XY, Reichardt LF: Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 1996, 16: 3123–3129.PubMedCentralPubMed Eide FF, Vinig ER, Eide BL, Zang K, Wang XY, Reichardt LF: Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 1996, 16: 3123–3129.PubMedCentralPubMed
18.
go back to reference Gonzalez M, Ruggiero FP, Chang Q, Shi YJ, Rich MM, Kraner S, Balice-Gordon RJ: Disruption of trkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 1999, 24: 567–583.PubMedCrossRef Gonzalez M, Ruggiero FP, Chang Q, Shi YJ, Rich MM, Kraner S, Balice-Gordon RJ: Disruption of trkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 1999, 24: 567–583.PubMedCrossRef
19.
go back to reference Saarelainen T, Pussinen R, Koponen E, Alhonen L, Wong G, Sirvio J, Castren E: Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 2000, 38: 102–104.PubMedCrossRef Saarelainen T, Pussinen R, Koponen E, Alhonen L, Wong G, Sirvio J, Castren E: Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 2000, 38: 102–104.PubMedCrossRef
20.
go back to reference Haapasalo A, Koponen E, Hoppe E, Wong G, Castren E: Truncated trkB.T1 is a dominant negative inhibitor of trkB.TK+-mediated cell survival. Biophys Res Commun 2001, 280: 1352–1358.CrossRef Haapasalo A, Koponen E, Hoppe E, Wong G, Castren E: Truncated trkB.T1 is a dominant negative inhibitor of trkB.TK+-mediated cell survival. Biophys Res Commun 2001, 280: 1352–1358.CrossRef
21.
go back to reference Lahteninen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E: Decreased BDNF signaling in transgenic mice reduces epileptogenesis. Eur J Neurosci 2002, 15: 721–734.CrossRef Lahteninen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E: Decreased BDNF signaling in transgenic mice reduces epileptogenesis. Eur J Neurosci 2002, 15: 721–734.CrossRef
22.
go back to reference Luikart BW, Nef S, Shipman T, Parada LF: In vivo role of truncated trkB receptors during sensory ganglion neurogenesis. Neuroscience 2003, 117: 847–858.PubMedCrossRef Luikart BW, Nef S, Shipman T, Parada LF: In vivo role of truncated trkB receptors during sensory ganglion neurogenesis. Neuroscience 2003, 117: 847–858.PubMedCrossRef
23.
go back to reference Dorsey SG, Renn CL, Carim-Todd L, Barrick CA, Bambrick L, Krueger BK, Ward CW, Tessarollo L: In vivo restoration of physiological levels of truncated trkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 2006, 51: 21–18.PubMedCrossRef Dorsey SG, Renn CL, Carim-Todd L, Barrick CA, Bambrick L, Krueger BK, Ward CW, Tessarollo L: In vivo restoration of physiological levels of truncated trkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 2006, 51: 21–18.PubMedCrossRef
24.
go back to reference Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L: Endogenous truncated trkB.T1 receptor regulates neuronal complexity and trkB kinase receptor function in vivo. J Neurosci 2009, 29: 678–685.PubMedCentralPubMedCrossRef Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L: Endogenous truncated trkB.T1 receptor regulates neuronal complexity and trkB kinase receptor function in vivo. J Neurosci 2009, 29: 678–685.PubMedCentralPubMedCrossRef
25.
go back to reference Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, Medina-Selby A, Coit D, Valenzuela P, Feinstein SC: Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 1997, 17: 2683–2690.PubMed Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, Medina-Selby A, Coit D, Valenzuela P, Feinstein SC: Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 1997, 17: 2683–2690.PubMed
26.
go back to reference Haapasalo A, Saarelainen T, Moshnyakov M, Arumae U, Kiema TR, Saarma M, Wong G, Castren E: Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene 1999, 18: 1285–1296.PubMedCrossRef Haapasalo A, Saarelainen T, Moshnyakov M, Arumae U, Kiema TR, Saarma M, Wong G, Castren E: Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene 1999, 18: 1285–1296.PubMedCrossRef
27.
go back to reference Yacoubian TA, Lo DC: Truncated and full-length trkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 2000, 3: 342–349.PubMedCrossRef Yacoubian TA, Lo DC: Truncated and full-length trkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 2000, 3: 342–349.PubMedCrossRef
28.
go back to reference Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A: Truncated trkB-T1 mediates neurotrophin-evoked calcium signaling in glia cells. Nature 2003, 426: 74–78.PubMedCrossRef Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A: Truncated trkB-T1 mediates neurotrophin-evoked calcium signaling in glia cells. Nature 2003, 426: 74–78.PubMedCrossRef
29.
go back to reference Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F, Lessmann V: Truncated trkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 2004, 117: 5803–5814.PubMedCrossRef Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F, Lessmann V: Truncated trkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 2004, 117: 5803–5814.PubMedCrossRef
30.
go back to reference Ohira K, Kumanogoh H, Sahara Y, Homma KJ, Hirai H, Nakamura S, Hayashi M: A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci 2005, 25: 1343–1353.PubMedCrossRef Ohira K, Kumanogoh H, Sahara Y, Homma KJ, Hirai H, Nakamura S, Hayashi M: A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci 2005, 25: 1343–1353.PubMedCrossRef
31.
go back to reference Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M: TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun 2006, 342: 867–874.PubMedCrossRef Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M: TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun 2006, 342: 867–874.PubMedCrossRef
32.
go back to reference Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, et al.: BDNF and full-length and truncated trkB expression in Alzheimer disease: Implications in therapeutic strategies. J Neuropathol Exp Neurol 1999, 58: 729–739.PubMedCrossRef Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, et al.: BDNF and full-length and truncated trkB expression in Alzheimer disease: Implications in therapeutic strategies. J Neuropathol Exp Neurol 1999, 58: 729–739.PubMedCrossRef
33.
go back to reference Dorsey SG, Bambrick LL, Balice-Gordon RJ, Krueger BK: Failure of brain-derived neurotrophic factor-dependent neuron survival in mouse trisomy 16. J Neurosci 2002, 22: 2571–2578.PubMed Dorsey SG, Bambrick LL, Balice-Gordon RJ, Krueger BK: Failure of brain-derived neurotrophic factor-dependent neuron survival in mouse trisomy 16. J Neurosci 2002, 22: 2571–2578.PubMed
34.
go back to reference Li YX, Xu Y, Ju D, Lester HA, Davidson N, Schuman EM: Expression of a dominant negative trkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc Natl Acad Sci USA 1998, 95: 10884–10889.PubMedCentralPubMedCrossRef Li YX, Xu Y, Ju D, Lester HA, Davidson N, Schuman EM: Expression of a dominant negative trkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc Natl Acad Sci USA 1998, 95: 10884–10889.PubMedCentralPubMedCrossRef
35.
go back to reference Maratou K, Wallace VC, Hasnie FS, Okuse K, Hosseini R, et al.: Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain. Eur J Pain 2009, 13: 87–98.CrossRef Maratou K, Wallace VC, Hasnie FS, Okuse K, Hosseini R, et al.: Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain. Eur J Pain 2009, 13: 87–98.CrossRef
36.
go back to reference Joseph EK, Chen X, Khasar SG, Levine JD: Novel mechanism of enhanced nociception in a model of AIDS-therapy-induced painful peripheral neuropathy in the rat. Pain 2004, 107: 147–158.PubMedCrossRef Joseph EK, Chen X, Khasar SG, Levine JD: Novel mechanism of enhanced nociception in a model of AIDS-therapy-induced painful peripheral neuropathy in the rat. Pain 2004, 107: 147–158.PubMedCrossRef
37.
go back to reference Dorsey SG, Leitch CC, Renn CL, Lessans S, Smith BA, Wang XM, Dionne RA: Genome-wide screen identifies drug-induced regulation of the gene giant axonal neuropathy (Gan) in a mouse model of antiretroviral-induced painful peripheral neuropathy. Biol Res Nurs 2009,11(1):7–16.PubMedCentralPubMedCrossRef Dorsey SG, Leitch CC, Renn CL, Lessans S, Smith BA, Wang XM, Dionne RA: Genome-wide screen identifies drug-induced regulation of the gene giant axonal neuropathy (Gan) in a mouse model of antiretroviral-induced painful peripheral neuropathy. Biol Res Nurs 2009,11(1):7–16.PubMedCentralPubMedCrossRef
38.
go back to reference Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, Bardoni R: BDNF as a pain modulator. Prog Neurobiol 2008, 85: 297–317.PubMedCrossRef Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, Bardoni R: BDNF as a pain modulator. Prog Neurobiol 2008, 85: 297–317.PubMedCrossRef
39.
go back to reference Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M: Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 1993, 75: 113–122.PubMedCrossRef Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M: Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 1993, 75: 113–122.PubMedCrossRef
40.
go back to reference Frisen J, Verge VM, Fried K, Risling M, Persson H, Trotter J, Hokfelt T, Lindholm D: Characterization of glial trkB receptors: Differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci USA 1993, 90: 4971–4975.PubMedCentralPubMedCrossRef Frisen J, Verge VM, Fried K, Risling M, Persson H, Trotter J, Hokfelt T, Lindholm D: Characterization of glial trkB receptors: Differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci USA 1993, 90: 4971–4975.PubMedCentralPubMedCrossRef
41.
go back to reference Ren K: An improved method for assessing mechanical allodynia in the rat. Physiol Behav 1999, 67: 711–716.PubMedCrossRef Ren K: An improved method for assessing mechanical allodynia in the rat. Physiol Behav 1999, 67: 711–716.PubMedCrossRef
Metadata
Title
In vivo evidence that truncated trkB.T1 participates in nociception
Authors
Cynthia L Renn
Carmen C Leitch
Susan G Dorsey
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-61

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue