Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Research

Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain

Authors: Ying-Ju Chen, Chia-Wei Huang, Chih-Shin Lin, Wen-Han Chang, Wei-Hsin Sun

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

Background

Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear.

Results

In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function.

Conclusion

Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.
Appendix
Available only for authorised users
Literature
3.
go back to reference Steen KH, Reeh PW, Anton F, Handwerker HO: Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 1992, 12: 86–95.PubMed Steen KH, Reeh PW, Anton F, Handwerker HO: Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 1992, 12: 86–95.PubMed
4.
go back to reference Steen KH, Reeh PW: Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 1993, 154: 113–116.PubMedCrossRef Steen KH, Reeh PW: Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 1993, 154: 113–116.PubMedCrossRef
5.
go back to reference Issberner U, Reeh PW, Steen KH: Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 1996, 208: 191–194.PubMedCrossRef Issberner U, Reeh PW, Steen KH: Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 1996, 208: 191–194.PubMedCrossRef
6.
7.
8.
go back to reference Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenberg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288: 306–313.PubMedCrossRef Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenberg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288: 306–313.PubMedCrossRef
9.
go back to reference Davis JB, Gray J, Gunthorpe M, Hatcher JP, Davey PT, Overend P, Harrles MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405: 183–187.PubMedCrossRef Davis JB, Gray J, Gunthorpe M, Hatcher JP, Davey PT, Overend P, Harrles MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405: 183–187.PubMedCrossRef
10.
go back to reference Price MP, Mcllwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001, 32: 1071–1083.PubMedCrossRef Price MP, Mcllwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001, 32: 1071–1083.PubMedCrossRef
11.
go back to reference Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ: Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 2003, 106: 229–239.PubMedCrossRef Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ: Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 2003, 106: 229–239.PubMedCrossRef
12.
go back to reference Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP: ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 2007, 129: 102–112.PubMedCentralPubMedCrossRef Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP: ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 2007, 129: 102–112.PubMedCentralPubMedCrossRef
13.
go back to reference Mogil JS, Breese NM, Witty M-F, Ritchie J, Rainville M-L, Ase A, Abbadi N, Stucky CL, Seguela P: Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 2005, 25: 9893–9901.PubMedCrossRef Mogil JS, Breese NM, Witty M-F, Ritchie J, Rainville M-L, Ase A, Abbadi N, Stucky CL, Seguela P: Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 2005, 25: 9893–9901.PubMedCrossRef
14.
go back to reference Deval E, Noel J, Lay N, alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E: ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 2008, 27: 3047–3055.PubMedCentralPubMedCrossRef Deval E, Noel J, Lay N, alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E: ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 2008, 27: 3047–3055.PubMedCentralPubMedCrossRef
15.
go back to reference Carlton SM, Coggeshall RE: Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neuroscience Letters 2001, 310: 53–56.PubMedCrossRef Carlton SM, Coggeshall RE: Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neuroscience Letters 2001, 310: 53–56.PubMedCrossRef
16.
go back to reference Amaya F, Oh-hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M: Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 2003, 963: 190–196.PubMedCrossRef Amaya F, Oh-hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M: Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 2003, 963: 190–196.PubMedCrossRef
17.
go back to reference Breese NM, George AC, Pauers LE, Stucky CL: Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 2005, 115: 37–49.PubMedCrossRef Breese NM, George AC, Pauers LE, Stucky CL: Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 2005, 115: 37–49.PubMedCrossRef
18.
go back to reference Voilley N, Weille J, Mamet J, Lazdunski M: Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 2001, 21: 8026–8033.PubMed Voilley N, Weille J, Mamet J, Lazdunski M: Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 2001, 21: 8026–8033.PubMed
19.
go back to reference Mamet J, Baron A, Lazdunski M, Voilley N: Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 2002, 22: 10662–10670.PubMed Mamet J, Baron A, Lazdunski M, Voilley N: Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 2002, 22: 10662–10670.PubMed
20.
go back to reference Mamet J, Lazdunski M, Voilley N: How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in senory neurons. J Bio Chem 2003, 278: 48907–48913.CrossRef Mamet J, Lazdunski M, Voilley N: How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in senory neurons. J Bio Chem 2003, 278: 48907–48913.CrossRef
21.
go back to reference Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, Davis JB, Mayer EA, Bunnett NW: Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 2004, 24: 4300–4312.PubMedCrossRef Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, Davis JB, Mayer EA, Bunnett NW: Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 2004, 24: 4300–4312.PubMedCrossRef
22.
go back to reference Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett NW: Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 2006, 575: 555–571.PubMedCentralPubMedCrossRef Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett NW: Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 2006, 575: 555–571.PubMedCentralPubMedCrossRef
23.
go back to reference Zhang N, Inan S, cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ: A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. PNAS 2005, 102: 4536–4541.PubMedCentralPubMedCrossRef Zhang N, Inan S, cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ: A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. PNAS 2005, 102: 4536–4541.PubMedCentralPubMedCrossRef
24.
go back to reference Ludwig M, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K: Proton-sensing G-protein-coupled receptors. Nature 2003, 425: 93–98.PubMedCrossRef Ludwig M, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K: Proton-sensing G-protein-coupled receptors. Nature 2003, 425: 93–98.PubMedCrossRef
25.
go back to reference Murakami N, Yokomizo T, Okuno T, Shimizu T: G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem 2004, 279: 42484–42491.PubMedCrossRef Murakami N, Yokomizo T, Okuno T, Shimizu T: G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem 2004, 279: 42484–42491.PubMedCrossRef
26.
go back to reference Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F: TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 2004, 279: 45626–45633.PubMedCrossRef Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F: TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 2004, 279: 45626–45633.PubMedCrossRef
27.
go back to reference Ishii S, Kihara Y, Shimizu T: Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein coupled receptor. J Biol Chem 2005, 280: 9083–9087.PubMedCrossRef Ishii S, Kihara Y, Shimizu T: Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein coupled receptor. J Biol Chem 2005, 280: 9083–9087.PubMedCrossRef
28.
go back to reference Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH: Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci 2007, 36: 195–210.PubMedCrossRef Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH: Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci 2007, 36: 195–210.PubMedCrossRef
29.
go back to reference Sun WH, Chen CC: ASIC3 and proton-sensing G protein-coupled receptors. In Nociceptive and Neuropathic pain: mechanisms and treatments. Edited by: Shyu BC, Chien CC. India: Research Signpost; 2009:33–52. Sun WH, Chen CC: ASIC3 and proton-sensing G protein-coupled receptors. In Nociceptive and Neuropathic pain: mechanisms and treatments. Edited by: Shyu BC, Chien CC. India: Research Signpost; 2009:33–52.
30.
go back to reference Zegarska B, Lelinska A, Tyrakowski T: Clinical and Experimental aspects of cutaneous neurogenic inflammation. Pharmacological reports 2006, 58: 13–21.PubMed Zegarska B, Lelinska A, Tyrakowski T: Clinical and Experimental aspects of cutaneous neurogenic inflammation. Pharmacological reports 2006, 58: 13–21.PubMed
31.
go back to reference Simone DA, Ngeow JY, Putterman GJ, LaMotte RH: Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 1987, 418: 201–203.PubMedCrossRef Simone DA, Ngeow JY, Putterman GJ, LaMotte RH: Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 1987, 418: 201–203.PubMedCrossRef
32.
go back to reference Simone DA, Baumann TK, LaMotte RH: Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 1989, 38: 99–107.PubMedCrossRef Simone DA, Baumann TK, LaMotte RH: Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 1989, 38: 99–107.PubMedCrossRef
33.
go back to reference LaMotte RH, Shain CN, Simone DA, Tsai EF: Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol. 1991,66(1):190–211.PubMed LaMotte RH, Shain CN, Simone DA, Tsai EF: Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol. 1991,66(1):190–211.PubMed
34.
go back to reference Sakurada T, Katsumata K, Tan-No K, Sakurada S, Kisara K: The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 1992, 31: 1279–1285.PubMedCrossRef Sakurada T, Katsumata K, Tan-No K, Sakurada S, Kisara K: The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 1992, 31: 1279–1285.PubMedCrossRef
35.
go back to reference Gilchrist HD, Allard BL, Simone DA: Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 1996, 67: 179–188.PubMedCrossRef Gilchrist HD, Allard BL, Simone DA: Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 1996, 67: 179–188.PubMedCrossRef
36.
go back to reference Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88.PubMedCrossRef Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88.PubMedCrossRef
37.
go back to reference Menéndez L, Lastra A, Hidalgo A, Baamonde A: The analgesic effect induced by capsaicin is enhanced in inflammatory states. Life Sci 2004, 74: 3235–44.PubMedCrossRef Menéndez L, Lastra A, Hidalgo A, Baamonde A: The analgesic effect induced by capsaicin is enhanced in inflammatory states. Life Sci 2004, 74: 3235–44.PubMedCrossRef
38.
go back to reference Ren K, Dubner R: Inflammatory models of pain and hyperalgesia. ILAR J 1999, 40: 1–10.CrossRef Ren K, Dubner R: Inflammatory models of pain and hyperalgesia. ILAR J 1999, 40: 1–10.CrossRef
39.
go back to reference Jancsó G, Király E, Joó F, Such G, Nagy A: Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat. Neurosci Lett 1985, 59: 209–214.PubMedCrossRef Jancsó G, Király E, Joó F, Such G, Nagy A: Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat. Neurosci Lett 1985, 59: 209–214.PubMedCrossRef
40.
go back to reference Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S: Capsaicin-induced ion fluexes in dorsal root ganglion cells in culture. J Neurosci 1988, 8: 3208–3220.PubMed Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S: Capsaicin-induced ion fluexes in dorsal root ganglion cells in culture. J Neurosci 1988, 8: 3208–3220.PubMed
41.
go back to reference Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389: 816–824.PubMedCrossRef Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389: 816–824.PubMedCrossRef
42.
go back to reference Choi JW, Lee SY, Choi Y: Identification of a putative G protein-coupled receptor induced during activation-induced apotosis of T cells. Cellular immunology 1996, 168: 78–84.PubMedCrossRef Choi JW, Lee SY, Choi Y: Identification of a putative G protein-coupled receptor induced during activation-induced apotosis of T cells. Cellular immunology 1996, 168: 78–84.PubMedCrossRef
43.
go back to reference Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang LV, Jhonson J, Witte ON: Normal immune development and glucocorticoid-induced tymocyte apoptosis in mice deicient for the T-cell death-associated gene. Mol Cell Biol 2006, 26: 668–677.PubMedCentralPubMedCrossRef Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang LV, Jhonson J, Witte ON: Normal immune development and glucocorticoid-induced tymocyte apoptosis in mice deicient for the T-cell death-associated gene. Mol Cell Biol 2006, 26: 668–677.PubMedCentralPubMedCrossRef
44.
go back to reference Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON: Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. PNAS 2005, 102: 1632–1637.PubMedCentralPubMedCrossRef Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON: Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. PNAS 2005, 102: 1632–1637.PubMedCentralPubMedCrossRef
45.
go back to reference Bolick DT, Whetzel AM, Skaflen M, Deem T, Lee J, Hedrick CC: Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circulation research 2007, 100: 572–580.PubMedCrossRef Bolick DT, Whetzel AM, Skaflen M, Deem T, Lee J, Hedrick CC: Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circulation research 2007, 100: 572–580.PubMedCrossRef
46.
go back to reference Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON: Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 2007, 27: 1334–1347.PubMedCentralPubMedCrossRef Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON: Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 2007, 27: 1334–1347.PubMedCentralPubMedCrossRef
47.
go back to reference Danese S, Dejana E, Fiocchi C: Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 2007, 178: 6017–6022.PubMedCrossRef Danese S, Dejana E, Fiocchi C: Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 2007, 178: 6017–6022.PubMedCrossRef
48.
go back to reference Lewin GR, Stucky CL: Sensory neuron mechanotransduction: its regulation and underlying molecular mechanisms. In Molecular Basis of Pain Induction. Edited by: Wood JN. New York: Wiley; 2000:129–149. Lewin GR, Stucky CL: Sensory neuron mechanotransduction: its regulation and underlying molecular mechanisms. In Molecular Basis of Pain Induction. Edited by: Wood JN. New York: Wiley; 2000:129–149.
49.
go back to reference Snider WD, McMahon SB: Tacking pain at the source: new ideas about nociceptors. Neuron 1998, 20: 629–632.PubMedCrossRef Snider WD, McMahon SB: Tacking pain at the source: new ideas about nociceptors. Neuron 1998, 20: 629–632.PubMedCrossRef
50.
go back to reference Stucky CL, Lewin GR: Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 1999, 19: 6497–505.PubMed Stucky CL, Lewin GR: Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 1999, 19: 6497–505.PubMed
51.
go back to reference Dirajlal S, Pauers LE, Stucky CL: Differential response properties of IB4-positive and negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 2003, 89: 513–524.PubMedCrossRef Dirajlal S, Pauers LE, Stucky CL: Differential response properties of IB4-positive and negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 2003, 89: 513–524.PubMedCrossRef
52.
go back to reference Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates, multiple pain-producing stimuli. Neuron 1998, 21: 531–543.PubMedCrossRef Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates, multiple pain-producing stimuli. Neuron 1998, 21: 531–543.PubMedCrossRef
53.
go back to reference Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW: cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002,35(4):721–731.PubMedCrossRef Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW: cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002,35(4):721–731.PubMedCrossRef
54.
go back to reference Bhave G, Gereau RW: Psottranslational mechanisms of peripheral sensitization. J Neurobiol 2004, 61: 88–106.PubMedCrossRef Bhave G, Gereau RW: Psottranslational mechanisms of peripheral sensitization. J Neurobiol 2004, 61: 88–106.PubMedCrossRef
55.
go back to reference Hucho TB, Dina OA, Levine JD: Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4 (+) neuron-specific mechanism. Neuroscience 2005, 25: 6119–6126.PubMedCrossRef Hucho TB, Dina OA, Levine JD: Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4 (+) neuron-specific mechanism. Neuroscience 2005, 25: 6119–6126.PubMedCrossRef
56.
go back to reference Aley KO, Messing RO, Mochly-Rosen D, Levine JD: Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the ε isozyme of protein kinase C. J Neurosci 2000, 20: 4680–4685.PubMed Aley KO, Messing RO, Mochly-Rosen D, Levine JD: Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the ε isozyme of protein kinase C. J Neurosci 2000, 20: 4680–4685.PubMed
57.
go back to reference Parada CA, Yeh JJ, Reichling DB, Levine JD: Transient attenuation of protein kinase Cε can terminate a chronic hyperalgesic state in the rat. Neuroscience 2003, 120: 219–226.PubMedCrossRef Parada CA, Yeh JJ, Reichling DB, Levine JD: Transient attenuation of protein kinase Cε can terminate a chronic hyperalgesic state in the rat. Neuroscience 2003, 120: 219–226.PubMedCrossRef
58.
go back to reference Parada CA, Reichling DB, Levine JD: Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCε second messenger pathways. Pain 2005, 113: 185–190.PubMedCrossRef Parada CA, Reichling DB, Levine JD: Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCε second messenger pathways. Pain 2005, 113: 185–190.PubMedCrossRef
59.
go back to reference Tomura H, Wang J, Komachi M, Damirin A, Mogi C, Tobo M, Kon J, Misawa N, Sato K, Okajima F: Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 2005, 280: 34458–34464.PubMedCrossRef Tomura H, Wang J, Komachi M, Damirin A, Mogi C, Tobo M, Kon J, Misawa N, Sato K, Okajima F: Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 2005, 280: 34458–34464.PubMedCrossRef
60.
go back to reference Yang M, Mailhot G, Birnbaum MJ, Mackay CA, Mason-Savas A, Odgren PR: Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during Osteoclastogenesis. J Biol Chem 2006, 281: 23598–23605.PubMedCrossRef Yang M, Mailhot G, Birnbaum MJ, Mackay CA, Mason-Savas A, Odgren PR: Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during Osteoclastogenesis. J Biol Chem 2006, 281: 23598–23605.PubMedCrossRef
61.
go back to reference Tobo M, Tomura H, Mogi C, Wang J, Liu J, Komachi M, Damirin A, Kimura T, Murata N, Kurose H, Sato K, Okajima F: Previously postulated " ligand-independent" signaling of GPR4 is mediated through proton-sensing mechanisms. Cell Signal. 2007,19(8):1745–1753.PubMedCrossRef Tobo M, Tomura H, Mogi C, Wang J, Liu J, Komachi M, Damirin A, Kimura T, Murata N, Kurose H, Sato K, Okajima F: Previously postulated " ligand-independent" signaling of GPR4 is mediated through proton-sensing mechanisms. Cell Signal. 2007,19(8):1745–1753.PubMedCrossRef
62.
go back to reference Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela E, Ferre S: Basic concepts in G-protein-coupled receptor homo-and heterodimerization. TheScientificWorldJOURNAL 2007, 7: 48–57.PubMedCrossRef Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela E, Ferre S: Basic concepts in G-protein-coupled receptor homo-and heterodimerization. TheScientificWorldJOURNAL 2007, 7: 48–57.PubMedCrossRef
63.
go back to reference Zaslavsky A, Singh LS, Tan H, Ding H, Liang Z, Xu Y: Homo-and hetero-dimerization of LPA/S1P receptors, OGR1 and GPR4. Biochim Biophys Acta. 2006,1761(10):1200–1212.PubMedCrossRef Zaslavsky A, Singh LS, Tan H, Ding H, Liang Z, Xu Y: Homo-and hetero-dimerization of LPA/S1P receptors, OGR1 and GPR4. Biochim Biophys Acta. 2006,1761(10):1200–1212.PubMedCrossRef
Metadata
Title
Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain
Authors
Ying-Ju Chen
Chia-Wei Huang
Chih-Shin Lin
Wen-Han Chang
Wei-Hsin Sun
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-39

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue