Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Short report

Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays

Authors: Makoto Tsuda, Kazuya Kuboyama, Tomoyuki Inoue, Kenichiro Nagata, Hidetoshi Tozaki-Saitoh, Kazuhide Inoue

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4-/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4-/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4-/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4-/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.
Appendix
Available only for authorised users
Literature
2.
go back to reference Khakh BS, North RA: P2X receptors as cell-surface ATP sensors in health and disease. Nature 2006, 442: 527–532.CrossRef Khakh BS, North RA: P2X receptors as cell-surface ATP sensors in health and disease. Nature 2006, 442: 527–532.CrossRef
3.
go back to reference Burnstock G: Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008, 7: 575–590.CrossRef Burnstock G: Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008, 7: 575–590.CrossRef
4.
go back to reference Burnstock G: Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006, 110: 433–454.CrossRef Burnstock G: Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006, 110: 433–454.CrossRef
5.
go back to reference Nakatsuka T, Gu JG: P2X purinoceptors and sensory transmission. Pflugers Arch 2006, 452: 598–607.CrossRef Nakatsuka T, Gu JG: P2X purinoceptors and sensory transmission. Pflugers Arch 2006, 452: 598–607.CrossRef
6.
go back to reference Tsuda M, Inoue K: Chapter 9 – P2X Receptors in Sensory Neurons. In The Nociceptive Membrane. Volume 57. Edited by: Oh U. San Diego: Academic Press; 2006:277–310.CrossRef Tsuda M, Inoue K: Chapter 9 – P2X Receptors in Sensory Neurons. In The Nociceptive Membrane. Volume 57. Edited by: Oh U. San Diego: Academic Press; 2006:277–310.CrossRef
7.
go back to reference Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424: 778–783.CrossRef Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424: 778–783.CrossRef
8.
go back to reference Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 2005, 28: 101–107.CrossRef Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 2005, 28: 101–107.CrossRef
9.
go back to reference Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.CrossRef Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.CrossRef
10.
go back to reference Trang T, Beggs S, Salter MW: Purinoceptors in microglia and neuropathic pain. Pflugers Arch 2006, 452: 645–652.CrossRef Trang T, Beggs S, Salter MW: Purinoceptors in microglia and neuropathic pain. Pflugers Arch 2006, 452: 645–652.CrossRef
11.
go back to reference Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368.CrossRef Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368.CrossRef
12.
go back to reference Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, Koizumi S, Yamamoto K, Ando J, Inoue K: Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 2008, 56: 579–585.CrossRef Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, Koizumi S, Yamamoto K, Ando J, Inoue K: Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 2008, 56: 579–585.CrossRef
13.
go back to reference Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K: Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 2008, 56: 50–58.CrossRef Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K: Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 2008, 56: 50–58.CrossRef
14.
go back to reference Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, et al.: Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 2000, 407: 1011–1015.CrossRef Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, et al.: Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 2000, 407: 1011–1015.CrossRef
15.
go back to reference Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, et al.: Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 2000, 407: 1015–1017.CrossRef Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, et al.: Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 2000, 407: 1015–1017.CrossRef
16.
go back to reference Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, et al.: A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002, 99: 17179–17184.PubMedCentralCrossRef Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, et al.: A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002, 99: 17179–17184.PubMedCentralCrossRef
17.
go back to reference Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, et al.: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114: 386–396.CrossRef Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, et al.: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114: 386–396.CrossRef
18.
go back to reference Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, et al.: A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 2006, 319: 1376–1385.CrossRef Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, et al.: A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 2006, 319: 1376–1385.CrossRef
19.
go back to reference Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, et al.: Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 2006, 12: 133–137.CrossRef Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, et al.: Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 2006, 12: 133–137.CrossRef
20.
go back to reference Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G, North RA, Rassendren F: Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 2006, 26: 9006–9009.CrossRef Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G, North RA, Rassendren F: Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 2006, 26: 9006–9009.CrossRef
21.
go back to reference Brone B, Moechars D, Marrannes R, Mercken M, Meert T: P2X currents in peritoneal macrophages of wild type and P2X4 -/- mice. Immunol Lett 2007, 113: 83–89.CrossRef Brone B, Moechars D, Marrannes R, Mercken M, Meert T: P2X currents in peritoneal macrophages of wild type and P2X4 -/- mice. Immunol Lett 2007, 113: 83–89.CrossRef
22.
go back to reference Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F: Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 2008, 28: 11263–11268.CrossRef Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F: Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 2008, 28: 11263–11268.CrossRef
23.
go back to reference Trang T, Beggs S, Wan X, Salter MW: P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 2009, 29: 3518–3528.PubMedCentralCrossRef Trang T, Beggs S, Wan X, Salter MW: P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 2009, 29: 3518–3528.PubMedCentralCrossRef
24.
go back to reference Keller AF, Beggs S, Salter MW, De Koninck Y: Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 2007, 3: 27.PubMedCentralCrossRef Keller AF, Beggs S, Salter MW, De Koninck Y: Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 2007, 3: 27.PubMedCentralCrossRef
25.
go back to reference Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K: Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 2006, 26: 8680–8690.CrossRef Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K: Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 2006, 26: 8680–8690.CrossRef
26.
go back to reference Bowler JW, Bailey RJ, North RA, Surprenant A: P2X4, P2Y1 and P2Y2 receptors on rat alveolar macrophages. Br J Pharmacol 2003, 140: 567–575.PubMedCentralCrossRef Bowler JW, Bailey RJ, North RA, Surprenant A: P2X4, P2Y1 and P2Y2 receptors on rat alveolar macrophages. Br J Pharmacol 2003, 140: 567–575.PubMedCentralCrossRef
27.
go back to reference Tsuda M, Ueno S, Inoue K: In vivo pathway of thermal hyperalgesia by intrathecal administration of alpha,beta-methylene ATP in mouse spinal cord: involvement of the glutamate-NMDA receptor system. Br J Pharmacol 1999, 127: 449–456.PubMedCentralCrossRef Tsuda M, Ueno S, Inoue K: In vivo pathway of thermal hyperalgesia by intrathecal administration of alpha,beta-methylene ATP in mouse spinal cord: involvement of the glutamate-NMDA receptor system. Br J Pharmacol 1999, 127: 449–456.PubMedCentralCrossRef
28.
go back to reference Tsuda M, Koizumi S, Kita A, Shigemoto Y, Ueno S, Inoue K: Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J Neurosci 2000, 20: RC90. Tsuda M, Koizumi S, Kita A, Shigemoto Y, Ueno S, Inoue K: Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J Neurosci 2000, 20: RC90.
29.
go back to reference Dixon WJ: Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441–462.CrossRef Dixon WJ: Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441–462.CrossRef
30.
go back to reference Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.CrossRef Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.CrossRef
31.
go back to reference Tsuda M, Ueno S, Inoue K: Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol 1999, 128: 1497–1504.PubMedCentralCrossRef Tsuda M, Ueno S, Inoue K: Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol 1999, 128: 1497–1504.PubMedCentralCrossRef
32.
go back to reference Tsuda M, Ishii S, Masuda T, Hasegawa S, Nakamura K, Nagata K, Yamashita T, Furue H, Tozaki-Saitoh H, Yoshimura M, et al.: Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem 2007, 102: 1658–1668.CrossRef Tsuda M, Ishii S, Masuda T, Hasegawa S, Nakamura K, Nagata K, Yamashita T, Furue H, Tozaki-Saitoh H, Yoshimura M, et al.: Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem 2007, 102: 1658–1668.CrossRef
33.
go back to reference Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363.CrossRef Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363.CrossRef
34.
go back to reference Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K: P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 2008, 28: 4949–4956.CrossRef Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K: P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 2008, 28: 4949–4956.CrossRef
35.
go back to reference Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH: Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 2008, 136: 188–201.PubMedCentralCrossRef Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH: Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 2008, 136: 188–201.PubMedCentralCrossRef
36.
go back to reference Flatters SJ, Bennett GJ: Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004, 109: 150–161.CrossRef Flatters SJ, Bennett GJ: Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004, 109: 150–161.CrossRef
Metadata
Title
Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays
Authors
Makoto Tsuda
Kazuya Kuboyama
Tomoyuki Inoue
Kenichiro Nagata
Hidetoshi Tozaki-Saitoh
Kazuhide Inoue
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-28

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue