Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Research

Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

Authors: Javier Garzón, Elena de la Torre-Madrid, María Rodríguez-Muñoz, Ana Vicente-Sánchez, Pilar Sánchez-Blázquez

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

Background

Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated.

Results

Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids.

Conclusion

In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martin BR, Sim-Selley LJ, Selley DE: Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol Sci 2004, 25: 325–330.PubMedCrossRef Martin BR, Sim-Selley LJ, Selley DE: Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol Sci 2004, 25: 325–330.PubMedCrossRef
2.
go back to reference Pertwee RG: Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 2000, 9: 1553–1571.PubMedCrossRef Pertwee RG: Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 2000, 9: 1553–1571.PubMedCrossRef
3.
go back to reference Porter AC, Felder CC: The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 2001, 90: 45–60.PubMedCrossRef Porter AC, Felder CC: The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 2001, 90: 45–60.PubMedCrossRef
4.
go back to reference Fan F, Compton DR, Ward S, Melvin L, Martin BR: Development of cross-tolerance between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. J Pharmacol Exp Ther 1994, 271: 1383–1390.PubMed Fan F, Compton DR, Ward S, Melvin L, Martin BR: Development of cross-tolerance between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. J Pharmacol Exp Ther 1994, 271: 1383–1390.PubMed
5.
go back to reference Sim-Selley LJ, Martin BR: Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-b enzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212–2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther 2002, 303: 36–44.PubMedCrossRef Sim-Selley LJ, Martin BR: Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-b enzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212–2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther 2002, 303: 36–44.PubMedCrossRef
6.
go back to reference Sim-Selley LJ, Schechter NS, Rorrer WK, Dalton GD, Hernandez J, Martin BR, Selley DE: Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 2006, 70: 986–996.PubMedCrossRef Sim-Selley LJ, Schechter NS, Rorrer WK, Dalton GD, Hernandez J, Martin BR, Selley DE: Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 2006, 70: 986–996.PubMedCrossRef
7.
go back to reference Hsieh C, Brown S, Derleth C, Mackie K: Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 1999, 73: 493–501.PubMedCrossRef Hsieh C, Brown S, Derleth C, Mackie K: Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 1999, 73: 493–501.PubMedCrossRef
8.
go back to reference Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL: Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 2007, 21: 802–811.PubMedCrossRef Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL: Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 2007, 21: 802–811.PubMedCrossRef
9.
go back to reference Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, Swiercz J, Mackie K, Monyer H, Parolaro D, Whistler J, Kuner T, Kuner R: A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 2007, 27: 4165–4177.PubMedCrossRef Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, Swiercz J, Mackie K, Monyer H, Parolaro D, Whistler J, Kuner T, Kuner R: A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 2007, 27: 4165–4177.PubMedCrossRef
11.
go back to reference Di Marzo V, Matias I: Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005, 8: 585–589.PubMedCrossRef Di Marzo V, Matias I: Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005, 8: 585–589.PubMedCrossRef
12.
go back to reference Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC: Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991, 11: 563–583.PubMed Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC: Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991, 11: 563–583.PubMed
14.
15.
16.
go back to reference Lauckner JE, Hille B, Mackie K: The cannabinoid agonist WIN55,212–2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 2005, 102: 19144–19149.PubMedCentralPubMedCrossRef Lauckner JE, Hille B, Mackie K: The cannabinoid agonist WIN55,212–2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 2005, 102: 19144–19149.PubMedCentralPubMedCrossRef
17.
go back to reference McIntosh BT, Hudson B, Yegorova S, Jollimore CA, Kelly ME: Agonist-dependent cannabinoid receptor signalling in human trabecular meshwork cells. Br J Pharmacol 2007, 152: 1111–1120.PubMedCentralPubMedCrossRef McIntosh BT, Hudson B, Yegorova S, Jollimore CA, Kelly ME: Agonist-dependent cannabinoid receptor signalling in human trabecular meshwork cells. Br J Pharmacol 2007, 152: 1111–1120.PubMedCentralPubMedCrossRef
19.
go back to reference Mackie K: Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 2006, 46: 101–122.PubMedCrossRef Mackie K: Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 2006, 46: 101–122.PubMedCrossRef
20.
go back to reference Mao J, Price DD, Lu J, Keniston L, Mayer DJ: Two distinctive antinociceptive systems in rats with pathological pain. Neurosci Lett 2000, 280: 13–16.PubMedCrossRef Mao J, Price DD, Lu J, Keniston L, Mayer DJ: Two distinctive antinociceptive systems in rats with pathological pain. Neurosci Lett 2000, 280: 13–16.PubMedCrossRef
21.
go back to reference Meng ID, Manning BH, Martin WJ, Fields HL: An analgesia circuit activated by cannabinoids. Nature 1998, 395: 381–383.PubMedCrossRef Meng ID, Manning BH, Martin WJ, Fields HL: An analgesia circuit activated by cannabinoids. Nature 1998, 395: 381–383.PubMedCrossRef
22.
go back to reference Rodriguez JJ, Mackie K, Pickel VM: Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 2001, 21: 823–833.PubMed Rodriguez JJ, Mackie K, Pickel VM: Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 2001, 21: 823–833.PubMed
23.
go back to reference Maldonado R, Valverde O: Participation of the opioid system in cannabinoid-induced antinociception and emotional-like responses. Eur Neuropsychopharmacol 2003, 13: 401–410.PubMedCrossRef Maldonado R, Valverde O: Participation of the opioid system in cannabinoid-induced antinociception and emotional-like responses. Eur Neuropsychopharmacol 2003, 13: 401–410.PubMedCrossRef
24.
go back to reference Vigano D, Rubino T, Parolaro D: Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol Biochem Behav 2005, 81: 360–368.PubMedCrossRef Vigano D, Rubino T, Parolaro D: Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol Biochem Behav 2005, 81: 360–368.PubMedCrossRef
25.
go back to reference Rodríguez-Muñoz M, de la Torre-Madrid E, Sánchez-Blázquez P, Garzón J: Morphine induces endocytosis of neuronal mu-opioid receptors through the sustained transfer of Galpha subunits to RGSZ2 proteins. Mol Pain 2007, 3: 19.PubMedCentralPubMedCrossRef Rodríguez-Muñoz M, de la Torre-Madrid E, Sánchez-Blázquez P, Garzón J: Morphine induces endocytosis of neuronal mu-opioid receptors through the sustained transfer of Galpha subunits to RGSZ2 proteins. Mol Pain 2007, 3: 19.PubMedCentralPubMedCrossRef
26.
go back to reference Finn AK, Whistler JL: Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 2001, 32: 829–839.PubMedCrossRef Finn AK, Whistler JL: Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 2001, 32: 829–839.PubMedCrossRef
27.
go back to reference Tanowitz M, von Zastrow M: A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 2003, 278: 45978–45986.PubMedCrossRef Tanowitz M, von Zastrow M: A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 2003, 278: 45978–45986.PubMedCrossRef
28.
go back to reference Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO, Wundrack N, Beyer A, Grecksch G, Hollt V: Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 2005, 67: 280–287.PubMedCrossRef Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO, Wundrack N, Beyer A, Grecksch G, Hollt V: Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 2005, 67: 280–287.PubMedCrossRef
29.
go back to reference Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Hollt V: Morphine induces terminal mu-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 2004, 23: 3282–3289.PubMedCentralPubMedCrossRef Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Hollt V: Morphine induces terminal mu-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 2004, 23: 3282–3289.PubMedCentralPubMedCrossRef
30.
go back to reference Ajit SK, Ramineni S, Edris W, Hunt RA, Hum WT, Hepler JR, Young KH: RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell Signal 2007, 19: 723–730.PubMedCrossRef Ajit SK, Ramineni S, Edris W, Hunt RA, Hum WT, Hepler JR, Young KH: RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell Signal 2007, 19: 723–730.PubMedCrossRef
31.
go back to reference Guang W, Wang H, Su T, Weinstein IB, Wang JB: Role of mPKCI, a novel mu-opioid receptor interactive protein, in receptor desensitization, phosphorylation, and morphine-induced analgesia. Mol Pharmacol 2004, 66: 1285–1292.PubMedCrossRef Guang W, Wang H, Su T, Weinstein IB, Wang JB: Role of mPKCI, a novel mu-opioid receptor interactive protein, in receptor desensitization, phosphorylation, and morphine-induced analgesia. Mol Pharmacol 2004, 66: 1285–1292.PubMedCrossRef
32.
go back to reference Rodríguez-Muñoz M, de la Torre-Madrid , Sánchez-Blázquez P, Wang JB, Garzón J: NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors. Cell Signal 2008, 20: 1855–1864.PubMedCrossRef Rodríguez-Muñoz M, de la Torre-Madrid , Sánchez-Blázquez P, Wang JB, Garzón J: NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors. Cell Signal 2008, 20: 1855–1864.PubMedCrossRef
33.
go back to reference Garzón J, Rodriguez-Muñoz M, Sánchez-Blázquez P: Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery? Curr Drug Abuse Rev 2008, 1: 222–238.PubMedCrossRef Garzón J, Rodriguez-Muñoz M, Sánchez-Blázquez P: Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery? Curr Drug Abuse Rev 2008, 1: 222–238.PubMedCrossRef
34.
go back to reference Garzón J, Rodríguez-Díaz M, López-Fando A, García-España A, Sánchez-Blázquez P: Glycosylated phosducin-like protein long regulates opioid receptor function in mouse brain. Neuropharmacology 2002, 42: 813–828.PubMedCrossRef Garzón J, Rodríguez-Díaz M, López-Fando A, García-España A, Sánchez-Blázquez P: Glycosylated phosducin-like protein long regulates opioid receptor function in mouse brain. Neuropharmacology 2002, 42: 813–828.PubMedCrossRef
35.
go back to reference Egertova M, Elphick MR: Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 2000, 422: 159–171.PubMedCrossRef Egertova M, Elphick MR: Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 2000, 422: 159–171.PubMedCrossRef
36.
go back to reference Hohmann AG, Briley EM, Herkenham M: Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 1999, 822: 17–25.PubMedCrossRef Hohmann AG, Briley EM, Herkenham M: Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 1999, 822: 17–25.PubMedCrossRef
37.
go back to reference Irving AJ, Coutts AA, Harvey J, Rae MG, Mackie K, Bewick GS, Pertwee RG: Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons. Neuroscience 2000, 98: 253–262.PubMedCrossRef Irving AJ, Coutts AA, Harvey J, Rae MG, Mackie K, Bewick GS, Pertwee RG: Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons. Neuroscience 2000, 98: 253–262.PubMedCrossRef
38.
go back to reference Lichtman AH, Cook SA, Martin BR: Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther 1996, 276: 585–593.PubMed Lichtman AH, Cook SA, Martin BR: Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther 1996, 276: 585–593.PubMed
39.
go back to reference Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ: Anatomy of CNS opioid receptors. Trends Neurosci 1988, 11: 308–314.PubMedCrossRef Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ: Anatomy of CNS opioid receptors. Trends Neurosci 1988, 11: 308–314.PubMedCrossRef
40.
go back to reference Yaksh TL, Yeung JC, Rudy TA: Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res 1976, 114: 83–103.PubMedCrossRef Yaksh TL, Yeung JC, Rudy TA: Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res 1976, 114: 83–103.PubMedCrossRef
41.
go back to reference Fields HL, Barbaro NM, Heinricher MM: Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res 1988, 77: 245–257.PubMedCrossRef Fields HL, Barbaro NM, Heinricher MM: Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res 1988, 77: 245–257.PubMedCrossRef
42.
go back to reference Marinelli S, Vaughan CW, Schnell SA, Wessendorf MW, Christie MJ: Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 2002, 22: 10847–10855.PubMed Marinelli S, Vaughan CW, Schnell SA, Wessendorf MW, Christie MJ: Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 2002, 22: 10847–10855.PubMed
43.
go back to reference Song C, Howlett AC: Rat brain cannabinoid receptors are N-linked glycosylated proteins. Life Sci 1995, 56: 1983–1989.PubMedCrossRef Song C, Howlett AC: Rat brain cannabinoid receptors are N-linked glycosylated proteins. Life Sci 1995, 56: 1983–1989.PubMedCrossRef
44.
go back to reference Dumbar B: Basic principles of posttranslational modifications of proteins and their analysis using high-resolution two-dimensional polyacrilamide gel electrophoresis. In Two dimensional electrophoresis and immunological techniques. New York: Plenum Press; 1987:77–102.CrossRef Dumbar B: Basic principles of posttranslational modifications of proteins and their analysis using high-resolution two-dimensional polyacrilamide gel electrophoresis. In Two dimensional electrophoresis and immunological techniques. New York: Plenum Press; 1987:77–102.CrossRef
45.
go back to reference Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P: Morphine alters the selective association between mu-opiold receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 2005, 48: 853–868.PubMedCrossRef Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P: Morphine alters the selective association between mu-opiold receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 2005, 48: 853–868.PubMedCrossRef
46.
go back to reference Chaturvedi K, Bandari P, Chinen N, Howells RD: Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors. J Biol Chem 2001, 276: 12345–12355.PubMedCrossRef Chaturvedi K, Bandari P, Chinen N, Howells RD: Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors. J Biol Chem 2001, 276: 12345–12355.PubMedCrossRef
47.
go back to reference Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P: The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 2005, 30: 1632–1648.PubMedCrossRef Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P: The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 2005, 30: 1632–1648.PubMedCrossRef
48.
go back to reference Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P: Activation of mu-opioid receptors transfers control of G alpha subunits to the regulator of G-protein signaling RGS9–2 – Role in receptor desensitization. J Biol Chem 2005, 280: 8951–8960.PubMedCrossRef Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P: Activation of mu-opioid receptors transfers control of G alpha subunits to the regulator of G-protein signaling RGS9–2 – Role in receptor desensitization. J Biol Chem 2005, 280: 8951–8960.PubMedCrossRef
49.
go back to reference Sánchez-Blázquez P, García-España A, Garzón J: In vivo injection of antisense oligodeoxynucleotides to G alpha subunits and supraspinal analgesia evoked by mu and delta opioid agonists. J Pharmacol Exp Ther 1995, 275: 1590–1596.PubMed Sánchez-Blázquez P, García-España A, Garzón J: In vivo injection of antisense oligodeoxynucleotides to G alpha subunits and supraspinal analgesia evoked by mu and delta opioid agonists. J Pharmacol Exp Ther 1995, 275: 1590–1596.PubMed
50.
go back to reference Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J: RGS-Rz and RGS9–2 proteins control mu-opiold receptor desensitisation in CNS: the role of activated G alpha z subunits. Neuropharmacology 2005, 48: 134–150.PubMedCrossRef Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J: RGS-Rz and RGS9–2 proteins control mu-opiold receptor desensitisation in CNS: the role of activated G alpha z subunits. Neuropharmacology 2005, 48: 134–150.PubMedCrossRef
51.
go back to reference Sánchez-Blázquez P, Garzón J: Delta opioid receptor subtypes activate inositol-signaling pathways in the production of antinociception. J Pharmacol Exp Ther 1998, 285: 820–827.PubMed Sánchez-Blázquez P, Garzón J: Delta opioid receptor subtypes activate inositol-signaling pathways in the production of antinociception. J Pharmacol Exp Ther 1998, 285: 820–827.PubMed
52.
go back to reference Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P: RGS9 proteins facilitate acute tolerance to mu-opioid effects. Eur J Neurosci 2001, 13: 801–811.PubMedCrossRef Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P: RGS9 proteins facilitate acute tolerance to mu-opioid effects. Eur J Neurosci 2001, 13: 801–811.PubMedCrossRef
53.
go back to reference Raffa RB, Stone DJ Jr, Hipp SJ: Differential cholera-toxin sensitivity of supraspinal antinociception induced by the cannabinoid agonists delta9-THC, WIN 55,212–2 and anandamide in mice. Neurosci Lett 1999, 263: 29–32.PubMedCrossRef Raffa RB, Stone DJ Jr, Hipp SJ: Differential cholera-toxin sensitivity of supraspinal antinociception induced by the cannabinoid agonists delta9-THC, WIN 55,212–2 and anandamide in mice. Neurosci Lett 1999, 263: 29–32.PubMedCrossRef
54.
go back to reference Garzón J, Rodríguez-Muñoz M, López-Fando A, García-España A, Sánchez-Blázquez P: RGSZ1 and GAIP regulate mu-but not delta-opioid receptors in mouse CNS: Role in tachyphylaxis and acute tolerance. Neuropsychopharmacology 2004, 29: 1091–1104.PubMedCrossRef Garzón J, Rodríguez-Muñoz M, López-Fando A, García-España A, Sánchez-Blázquez P: RGSZ1 and GAIP regulate mu-but not delta-opioid receptors in mouse CNS: Role in tachyphylaxis and acute tolerance. Neuropsychopharmacology 2004, 29: 1091–1104.PubMedCrossRef
55.
go back to reference Sánchez-Blázquez P, Garzón J: Pertussis Toxin Differentially Reduces the Efficacy of Opioids to Produce Supraspinal Analgesia in the Mouse. Eur J Pharmacol 1988, 152: 357–361.PubMedCrossRef Sánchez-Blázquez P, Garzón J: Pertussis Toxin Differentially Reduces the Efficacy of Opioids to Produce Supraspinal Analgesia in the Mouse. Eur J Pharmacol 1988, 152: 357–361.PubMedCrossRef
56.
go back to reference Sánchez-Blázquez P, Gómez-Serranillos P, Garzón J: Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated supraspinal analgesia. Brain Res Bull 2001, 54: 229–235.PubMedCrossRef Sánchez-Blázquez P, Gómez-Serranillos P, Garzón J: Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated supraspinal analgesia. Brain Res Bull 2001, 54: 229–235.PubMedCrossRef
57.
go back to reference Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ: Essential role for RGS9 in opiate action. Proc Natl Acad Sci USA 2003, 100: 13656–13661.PubMedCentralPubMedCrossRef Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ: Essential role for RGS9 in opiate action. Proc Natl Acad Sci USA 2003, 100: 13656–13661.PubMedCentralPubMedCrossRef
58.
go back to reference Garzón J, Castro M, Sánchez-Blázquez P: Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors. Eur J Neurosci 1998, 10: 2557–2564.PubMedCrossRef Garzón J, Castro M, Sánchez-Blázquez P: Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors. Eur J Neurosci 1998, 10: 2557–2564.PubMedCrossRef
59.
go back to reference Sánchez-Blázquez P, Martín-Clemente B, Castro MA, García-España A, Garzón J: Antisera to Gα subunits of Gi and Gx/z transducer proteins impair the supraspinal antinociceptive effect of neurotensin and clonidine in mice. Analgesia 1996, 2: 117–123. Sánchez-Blázquez P, Martín-Clemente B, Castro MA, García-España A, Garzón J: Antisera to Gα subunits of Gi and Gx/z transducer proteins impair the supraspinal antinociceptive effect of neurotensin and clonidine in mice. Analgesia 1996, 2: 117–123.
60.
go back to reference Rodríguez-Muñoz M, Bermúdez D, Sánchez-Blázquez P, Garzón J: Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 2007, 32: 842–850.PubMedCrossRef Rodríguez-Muñoz M, Bermúdez D, Sánchez-Blázquez P, Garzón J: Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 2007, 32: 842–850.PubMedCrossRef
61.
go back to reference Elmes SJ, Jhaveri MD, Smart D, Kendall DA, Chapman V: Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 2004, 20: 2311–2320.PubMedCrossRef Elmes SJ, Jhaveri MD, Smart D, Kendall DA, Chapman V: Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 2004, 20: 2311–2320.PubMedCrossRef
62.
go back to reference Oviedo A, Glowa J, Herkenham M: Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 1993, 616: 293–302.PubMedCrossRef Oviedo A, Glowa J, Herkenham M: Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 1993, 616: 293–302.PubMedCrossRef
63.
go back to reference Tzavara ET, Wade M, Nomikos GG: Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 2003, 23: 9374–9384.PubMed Tzavara ET, Wade M, Nomikos GG: Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 2003, 23: 9374–9384.PubMed
64.
go back to reference Garzón J, García-España A, Sánchez-Blázquez P: Opioids binding mu and delta receptors exhibit diverse efficacy in the activation of G(i2) and G(x/z) transducer proteins in mouse periaqueductal gray matter. J Pharmacol Exp Ther 1997, 281: 549–557.PubMed Garzón J, García-España A, Sánchez-Blázquez P: Opioids binding mu and delta receptors exhibit diverse efficacy in the activation of G(i2) and G(x/z) transducer proteins in mouse periaqueductal gray matter. J Pharmacol Exp Ther 1997, 281: 549–557.PubMed
65.
go back to reference Welch SP, Thomas C, Patrick GS: Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. J Pharmacol Exp Ther 1995, 272: 310–321.PubMed Welch SP, Thomas C, Patrick GS: Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. J Pharmacol Exp Ther 1995, 272: 310–321.PubMed
66.
go back to reference Shah S, Duttaroy A, Davis T, Yoburn BC: Spinal and supraspinal effects of pertussis toxin on opioid analgesia. Pharmacol Biochem Behav 1994, 49: 773–776.PubMedCrossRef Shah S, Duttaroy A, Davis T, Yoburn BC: Spinal and supraspinal effects of pertussis toxin on opioid analgesia. Pharmacol Biochem Behav 1994, 49: 773–776.PubMedCrossRef
67.
go back to reference Przewlocki R, Costa T, Lang J, Herz A: Pertussis toxin abolishes the antinociception mediated by opioid receptors in rat spinal cord. Eur J Pharmacol 1987, 144: 91–95.PubMedCrossRef Przewlocki R, Costa T, Lang J, Herz A: Pertussis toxin abolishes the antinociception mediated by opioid receptors in rat spinal cord. Eur J Pharmacol 1987, 144: 91–95.PubMedCrossRef
68.
go back to reference Garcia DE, Brown S, Hille B, Mackie K: Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J Neurosci 1998, 18: 2834–2841.PubMed Garcia DE, Brown S, Hille B, Mackie K: Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J Neurosci 1998, 18: 2834–2841.PubMed
69.
go back to reference Garzón J, de Antonio I, Sánchez-Blázquez P: In vivo modulation of G proteins and opioid receptor function by antisense oligodeoxynucleotides. Methods Enzymol 2000, 314: 3–20.PubMedCrossRef Garzón J, de Antonio I, Sánchez-Blázquez P: In vivo modulation of G proteins and opioid receptor function by antisense oligodeoxynucleotides. Methods Enzymol 2000, 314: 3–20.PubMedCrossRef
70.
go back to reference Sánchez-Blázquez P, de Antonio I, Montero C, Garzón J: Exogenous myristoylated-G(i2)alpha subunits of GTP-binding proteins are mitogens following their internalization by astrocytes in culture. Mol Brain Res 2003, 110: 15–26.PubMedCrossRef Sánchez-Blázquez P, de Antonio I, Montero C, Garzón J: Exogenous myristoylated-G(i2)alpha subunits of GTP-binding proteins are mitogens following their internalization by astrocytes in culture. Mol Brain Res 2003, 110: 15–26.PubMedCrossRef
71.
go back to reference Liu Q, Puche AC, Wang JB: Distribution and Expression of Protein Kinase C Interactive Protein (PKCI/HINT1) in Mouse Central Nervous System (CNS). Neurochem Res 2008, 33: 1263–1276.PubMedCrossRef Liu Q, Puche AC, Wang JB: Distribution and Expression of Protein Kinase C Interactive Protein (PKCI/HINT1) in Mouse Central Nervous System (CNS). Neurochem Res 2008, 33: 1263–1276.PubMedCrossRef
Metadata
Title
Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine
Authors
Javier Garzón
Elena de la Torre-Madrid
María Rodríguez-Muñoz
Ana Vicente-Sánchez
Pilar Sánchez-Blázquez
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-11

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue