Skip to main content
Top
Published in: Molecular Pain 1/2008

Open Access 01-12-2008 | Short report

Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain

Authors: Makoto Inoue, Lin Ma, Junken Aoki, Jerold Chun, Hiroshi Ueda

Published in: Molecular Pain | Issue 1/2008

Login to get access

Abstract

Recently, we reported that lysophosphatidic acid (LPA) induces long-lasting mechanical allodynia and thermal hyperalgesia as well as demyelination and upregulation of pain-related proteins through one of its cognate receptors, LPA1. In addition, mice lacking the LPA1 receptor gene (lpa 1 -/- mice) lost these nerve injury-induced neuropathic pain behaviors and phenomena. However, since lpa 1 -/- mice did not exhibit any effects on the basal nociceptive threshold, it is possible that nerve injury-induced neuropathic pain and its machineries are initiated by LPA via defined biosynthetic pathways that involve multiple enzymes. Here, we attempted to clarify the involvement of a single synthetic enzyme of LPA known as autotaxin (ATX) in nerve injury-induced neuropathic pain. Wild-type mice with partial sciatic nerve injury showed robust mechanical allodynia starting from day 3 after the nerve injury and persisting for at least 14 days, along with thermal hyperalgesia. On the other hand, heterozygous mutant mice for the autotaxin gene (atx+/-), which have 50% ATX protein and 50% lysophospholipase D activity compared with wild-type mice, showed approximately 50% recovery of nerve injury-induced neuropathic pain. In addition, hypersensitization of myelinated A β ˜ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGafqOSdiMbaGaaaaa@2D83@ - or Aδ-fiber function following nerve injury was observed in electrical stimuli-induced paw withdrawal tests using a Neurometer®. The hyperalgesia was completely abolished in lpa 1 -/- mice, and reduced by 50% in atx+/- mice. Taken together, these findings suggest that LPA biosynthesis through ATX is the source of LPA for LPA1 receptor-mediated neuropathic pain. Therefore, targeted inhibition of ATX-mediated LPA biosynthesis as well as LPA1 receptor and its downstream pathways may represent a novel way to prevent nerve injury-induced neuropathic pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tigyi G, Miledi R: Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. The Journal of biological chemistry 1992, 267: 21360–21367.PubMed Tigyi G, Miledi R: Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. The Journal of biological chemistry 1992, 267: 21360–21367.PubMed
2.
go back to reference Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S: Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 2003, 5: 38–45. 10.1038/ncb895CrossRefPubMed Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S: Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 2003, 5: 38–45. 10.1038/ncb895CrossRefPubMed
3.
go back to reference Jalink K, Eichholtz T, Postma FR, van Corven EJ, Moolenaar WH: Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ 1993, 4: 247–255.PubMed Jalink K, Eichholtz T, Postma FR, van Corven EJ, Moolenaar WH: Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ 1993, 4: 247–255.PubMed
4.
go back to reference Fukushima N, Weiner JA, Chun J: Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 2000, 228: 6–18. 10.1006/dbio.2000.9930CrossRefPubMed Fukushima N, Weiner JA, Chun J: Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 2000, 228: 6–18. 10.1006/dbio.2000.9930CrossRefPubMed
5.
go back to reference Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 2004, 10: 712–718. 10.1038/nm1060CrossRefPubMed Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 2004, 10: 712–718. 10.1038/nm1060CrossRefPubMed
6.
go back to reference Aoki J: Mechanisms of lysophosphatidic acid production. Seminars in cell & developmental biology 2004, 15: 477–489. 10.1016/j.semcdb.2004.05.001CrossRef Aoki J: Mechanisms of lysophosphatidic acid production. Seminars in cell & developmental biology 2004, 15: 477–489. 10.1016/j.semcdb.2004.05.001CrossRef
7.
go back to reference van Meeteren LA, Moolenaar WH: Regulation and biological activities of the autotaxin-LPA axis. Progress in lipid research 2007, 46: 145–160. 10.1016/j.plipres.2007.02.001CrossRefPubMed van Meeteren LA, Moolenaar WH: Regulation and biological activities of the autotaxin-LPA axis. Progress in lipid research 2007, 46: 145–160. 10.1016/j.plipres.2007.02.001CrossRefPubMed
8.
go back to reference Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K: Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. The Journal of biological chemistry 2002, 277: 39436–39442. 10.1074/jbc.M205623200CrossRefPubMed Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K: Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. The Journal of biological chemistry 2002, 277: 39436–39442. 10.1074/jbc.M205623200CrossRefPubMed
9.
go back to reference Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H: Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 2002, 158: 227–233. 10.1083/jcb.200204026PubMedCentralCrossRefPubMed Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H: Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 2002, 158: 227–233. 10.1083/jcb.200204026PubMedCentralCrossRefPubMed
10.
go back to reference Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H: Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. The Journal of biological chemistry 2006, 281: 25822–25830. 10.1074/jbc.M605142200CrossRefPubMed Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H: Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. The Journal of biological chemistry 2006, 281: 25822–25830. 10.1074/jbc.M605142200CrossRefPubMed
11.
go back to reference Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J: Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences of the United States of America 2000, 97: 13384–13389. 10.1073/pnas.97.24.13384PubMedCentralCrossRefPubMed Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J: Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences of the United States of America 2000, 97: 13384–13389. 10.1073/pnas.97.24.13384PubMedCentralCrossRefPubMed
12.
go back to reference Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110. 10.1016/0304-3959(83)90201-4CrossRefPubMed Zimmermann M: Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110. 10.1016/0304-3959(83)90201-4CrossRefPubMed
13.
go back to reference Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998, 76: 215–222. 10.1016/S0304-3959(98)00045-1CrossRefPubMed Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998, 76: 215–222. 10.1016/S0304-3959(98)00045-1CrossRefPubMed
14.
go back to reference Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88. 10.1016/0304-3959(88)90026-7CrossRefPubMed Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88. 10.1016/0304-3959(88)90026-7CrossRefPubMed
15.
go back to reference Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H: Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003, 304: 940–948. 10.1124/jpet.102.046250CrossRefPubMed Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H: Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003, 304: 940–948. 10.1124/jpet.102.046250CrossRefPubMed
16.
go back to reference Matsumoto M, Inoue M, Hald A, Xie W, Ueda H: Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin. J Pharmacol Exp Ther 2006, 318: 735–740. 10.1124/jpet.106.103614CrossRefPubMed Matsumoto M, Inoue M, Hald A, Xie W, Ueda H: Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin. J Pharmacol Exp Ther 2006, 318: 735–740. 10.1124/jpet.106.103614CrossRefPubMed
17.
go back to reference Matsumoto M, Inoue M, Hald A, Yamaguchi A, Ueda H: Characterization of three different sensory fibers by use of neonatal capsaicin treatment, spinal antagonism and a novel electrical stimulation-induced paw flexion test. Mol Pain 2006, 2: 16. 10.1186/1744-8069-2-16PubMedCentralCrossRefPubMed Matsumoto M, Inoue M, Hald A, Yamaguchi A, Ueda H: Characterization of three different sensory fibers by use of neonatal capsaicin treatment, spinal antagonism and a novel electrical stimulation-induced paw flexion test. Mol Pain 2006, 2: 16. 10.1186/1744-8069-2-16PubMedCentralCrossRefPubMed
18.
go back to reference Yokota T, Hansson GK: Immunological mechanisms in atherosclerosis. Journal of internal medicine 1995, 238: 479–489.CrossRefPubMed Yokota T, Hansson GK: Immunological mechanisms in atherosclerosis. Journal of internal medicine 1995, 238: 479–489.CrossRefPubMed
19.
go back to reference Murugesan G, Fox PL: Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. The Journal of clinical investigation 1996, 97: 2736–2744.PubMedCentralCrossRefPubMed Murugesan G, Fox PL: Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. The Journal of clinical investigation 1996, 97: 2736–2744.PubMedCentralCrossRefPubMed
20.
go back to reference Wallace VC, Cottrell DF, Brophy PJ, Fleetwood-Walker SM: Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. J Neurosci 2003, 23: 3221–3233.PubMed Wallace VC, Cottrell DF, Brophy PJ, Fleetwood-Walker SM: Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. J Neurosci 2003, 23: 3221–3233.PubMed
21.
go back to reference Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H: Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 2008. Epub ahead of print. Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H: Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 2008. Epub ahead of print.
22.
go back to reference Sato K, Malchinkhuu E, Muraki T, Ishikawa K, Hayashi K, Tosaka M, Mochiduki A, Inoue K, Tomura H, Mogi C, Nochi H, Tamoto K, Okajima F: Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem 2005, 92: 904–914. 10.1111/j.1471-4159.2004.02933.xCrossRefPubMed Sato K, Malchinkhuu E, Muraki T, Ishikawa K, Hayashi K, Tosaka M, Mochiduki A, Inoue K, Tomura H, Mogi C, Nochi H, Tamoto K, Okajima F: Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem 2005, 92: 904–914. 10.1111/j.1471-4159.2004.02933.xCrossRefPubMed
23.
go back to reference Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML: Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 2003, 63: 5446–5453.PubMed Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML: Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 2003, 63: 5446–5453.PubMed
Metadata
Title
Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain
Authors
Makoto Inoue
Lin Ma
Junken Aoki
Jerold Chun
Hiroshi Ueda
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2008
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-4-6

Other articles of this Issue 1/2008

Molecular Pain 1/2008 Go to the issue