Skip to main content
Top
Published in: Molecular Pain 1/2008

Open Access 01-12-2008 | Research

Brain derived neurotrophic factor (BDNF) contributes to the pain hypersensitivity following surgical incision in the rats

Authors: Chang-Qi Li, Jun-Mei Xu, Dan Liu, Jian-Yi Zhang, Ru-Ping Dai

Published in: Molecular Pain | Issue 1/2008

Login to get access

Abstract

Background

The pathogenic role of brain derived neurotrophic factor (BDNF) in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity.

Methods

A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG) and spinal cords were removed at various postoperative times (1–72 h). Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT) or intraperitoneal (IP) to modulate the spinal BDNF or peripheral BDNF after incision.

Results

After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect.

Conclusion

The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luo XG, Rush RA, Zhou XF: Ultrastructural localization of brain-derived neurotrophic factor in rat primary sensory neurons. Neurosci Res 2001, 39: 377–84.CrossRefPubMed Luo XG, Rush RA, Zhou XF: Ultrastructural localization of brain-derived neurotrophic factor in rat primary sensory neurons. Neurosci Res 2001, 39: 377–84.CrossRefPubMed
2.
go back to reference Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV: Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in trkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 1997, 17: 8476–90.PubMed Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV: Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in trkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 1997, 17: 8476–90.PubMed
3.
go back to reference Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW: Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 1999, 19: 5138–48.PubMed Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW: Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 1999, 19: 5138–48.PubMed
4.
go back to reference Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB: Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci USA 1999, 96: 7714–18.PubMedCentralCrossRefPubMed Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB: Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci USA 1999, 96: 7714–18.PubMedCentralCrossRefPubMed
5.
go back to reference Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M: Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 2005, 569: 685–95.PubMedCentralCrossRefPubMed Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M: Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 2005, 569: 685–95.PubMedCentralCrossRefPubMed
6.
go back to reference Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M: Neurotrophins in spinal cord nociceptive pathways. Prog Brain Res 2004, 146: 291–321.CrossRefPubMed Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M: Neurotrophins in spinal cord nociceptive pathways. Prog Brain Res 2004, 146: 291–321.CrossRefPubMed
7.
go back to reference Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB: Noxious stimulation induces trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 2002, 21: 684–95.CrossRefPubMed Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB: Noxious stimulation induces trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 2002, 21: 684–95.CrossRefPubMed
8.
go back to reference Miletic G, Hanson EN, Miletic V: Brain-derived neurotrophic factor-elicited or sciatic ligation-associated phosphorylation of cyclic AMP response element binding protein in the rat spinal dorsal horn is reduced by block of tyrosine kinase receptors. Neurosci Lett 2004, 361: 269–71.CrossRefPubMed Miletic G, Hanson EN, Miletic V: Brain-derived neurotrophic factor-elicited or sciatic ligation-associated phosphorylation of cyclic AMP response element binding protein in the rat spinal dorsal horn is reduced by block of tyrosine kinase receptors. Neurosci Lett 2004, 361: 269–71.CrossRefPubMed
9.
go back to reference Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T: Involvement of a spinal brain derived neurotrophic factor/full-length trkB pathway in the development of nerve injury induced thermal hyperalgesia in mice. Brain Res 2002, 958: 338–46.CrossRefPubMed Yajima Y, Narita M, Narita M, Matsumoto N, Suzuki T: Involvement of a spinal brain derived neurotrophic factor/full-length trkB pathway in the development of nerve injury induced thermal hyperalgesia in mice. Brain Res 2002, 958: 338–46.CrossRefPubMed
10.
go back to reference Brennan TJ, meulen EP, Gebhart GF: Characterization of a rat model of incisional pain. Pain 1996, 64: 493–501.CrossRefPubMed Brennan TJ, meulen EP, Gebhart GF: Characterization of a rat model of incisional pain. Pain 1996, 64: 493–501.CrossRefPubMed
11.
go back to reference Zahn PK, Brennan TJ: Lack of effect of intrathecally administered N-methyl-D-aspartate receptor antagonists in a rat model for postoperative pain. Anesthesiology 1998, 88: 143–156.CrossRefPubMed Zahn PK, Brennan TJ: Lack of effect of intrathecally administered N-methyl-D-aspartate receptor antagonists in a rat model for postoperative pain. Anesthesiology 1998, 88: 143–156.CrossRefPubMed
12.
go back to reference Zahn PK, Umali E, Brennan TJ: Intrathecal non-NMDA excitatory amino acid receptor antagonists inhibit pain behaviors in a rat model of postoperative pain. Pain 1998, 74: 213–223.CrossRefPubMed Zahn PK, Umali E, Brennan TJ: Intrathecal non-NMDA excitatory amino acid receptor antagonists inhibit pain behaviors in a rat model of postoperative pain. Pain 1998, 74: 213–223.CrossRefPubMed
13.
go back to reference Zahn PK, Pogatzki-Zahn EM, Brennan TJ: Spinal administration of MK-801 and NBQX demonstrates NMDA-independent dorsal horn sensitization in incisional pain. Pain 2005, 114: 499–510.CrossRefPubMed Zahn PK, Pogatzki-Zahn EM, Brennan TJ: Spinal administration of MK-801 and NBQX demonstrates NMDA-independent dorsal horn sensitization in incisional pain. Pain 2005, 114: 499–510.CrossRefPubMed
14.
go back to reference Banik RK, Subieta AR, Wu C, Brennan TJ: Increased nerve growth factor after rat plantar incision contributes to guarding behavior and heat hyperalgesia. Pain 2005, 117: 68–76.CrossRefPubMed Banik RK, Subieta AR, Wu C, Brennan TJ: Increased nerve growth factor after rat plantar incision contributes to guarding behavior and heat hyperalgesia. Pain 2005, 117: 68–76.CrossRefPubMed
15.
go back to reference Pezet S, McMahon SB: Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–38.CrossRefPubMed Pezet S, McMahon SB: Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006, 29: 507–38.CrossRefPubMed
16.
go back to reference Onda A, Murata Y, Rydevik B, Larsson K, Kikuchi S, Olmarker K: Infliximab attenuates immunoreactivity of brain-derived neurotrophic factor in a rat model of herniated nucleus pulposus. Spine 2004, 29: 1857–61.CrossRefPubMed Onda A, Murata Y, Rydevik B, Larsson K, Kikuchi S, Olmarker K: Infliximab attenuates immunoreactivity of brain-derived neurotrophic factor in a rat model of herniated nucleus pulposus. Spine 2004, 29: 1857–61.CrossRefPubMed
17.
go back to reference Fu D, Guo Q, Ai Y, Cai H, Yan J, Dai R: Glial activation and segmental upregulation of interleukin-1beta (IL-1β) in the rat spinal cord after surgical injury. Neurochem Res 2006, 31: 333–340.CrossRefPubMed Fu D, Guo Q, Ai Y, Cai H, Yan J, Dai R: Glial activation and segmental upregulation of interleukin-1beta (IL-1β) in the rat spinal cord after surgical injury. Neurochem Res 2006, 31: 333–340.CrossRefPubMed
18.
go back to reference Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–21.CrossRefPubMed Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–21.CrossRefPubMed
19.
go back to reference Cho HJ, Kim JK, Zhou XF, Rush RA: Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 1997, 764: 269–72.CrossRefPubMed Cho HJ, Kim JK, Zhou XF, Rush RA: Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 1997, 764: 269–72.CrossRefPubMed
20.
go back to reference Groth R, Aanonsen L: Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 2002, 100: 171–181.CrossRefPubMed Groth R, Aanonsen L: Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 2002, 100: 171–181.CrossRefPubMed
21.
go back to reference Kim HS, Lee SJ, Kim DS, Cho HJ: Effects of brain-derived neurotrophic factor and neurotrophin-3 on expression of mRNAs encoding c-Fos, neuropeptides and glutamic acid decarboxylase in cultured spinal neurons. Neuroreport 2000, 11: 3873–76.CrossRefPubMed Kim HS, Lee SJ, Kim DS, Cho HJ: Effects of brain-derived neurotrophic factor and neurotrophin-3 on expression of mRNAs encoding c-Fos, neuropeptides and glutamic acid decarboxylase in cultured spinal neurons. Neuroreport 2000, 11: 3873–76.CrossRefPubMed
22.
go back to reference Apfel SC, Wright DE, Wiideman AM, Dormia C, Snider WD, Kessler JA: Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol Cell Neurosci 1996, 7: 134–142.CrossRefPubMed Apfel SC, Wright DE, Wiideman AM, Dormia C, Snider WD, Kessler JA: Nerve growth factor regulates the expression of brain-derived neurotrophic factor mRNA in the peripheral nervous system. Mol Cell Neurosci 1996, 7: 134–142.CrossRefPubMed
23.
go back to reference Dolan S, Kelly JG, Huan M, Nolan AM: Transient up-regulation of spinal cyclooxygenase-2 and neuronal nitric oxide synthase following surgical inflammation. Anesthesiology 2003, 98: 170–80.CrossRefPubMed Dolan S, Kelly JG, Huan M, Nolan AM: Transient up-regulation of spinal cyclooxygenase-2 and neuronal nitric oxide synthase following surgical inflammation. Anesthesiology 2003, 98: 170–80.CrossRefPubMed
24.
go back to reference Kroin JS, Ling ZD, Buvanendran A, Tuman KJ: Upregulation of spinal cyclooxygenase-2 in rats after surgical incision. Anesthesiology 2004, 100: 364–9.CrossRefPubMed Kroin JS, Ling ZD, Buvanendran A, Tuman KJ: Upregulation of spinal cyclooxygenase-2 in rats after surgical incision. Anesthesiology 2004, 100: 364–9.CrossRefPubMed
25.
go back to reference Kishino A, Nakayama C: Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 2003, 964: 56–66.CrossRefPubMed Kishino A, Nakayama C: Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 2003, 964: 56–66.CrossRefPubMed
26.
go back to reference Condorelli DF, Dell'Albani P, Timmusk T, Mudò G, Belluardo N: Differential regulation of BDNF and NT-3 mRNA levels in primary cultures of rat cerebellar neurons. Neurochem Int 1998, 32: 87–91.CrossRefPubMed Condorelli DF, Dell'Albani P, Timmusk T, Mudò G, Belluardo N: Differential regulation of BDNF and NT-3 mRNA levels in primary cultures of rat cerebellar neurons. Neurochem Int 1998, 32: 87–91.CrossRefPubMed
27.
go back to reference Lever IJ, Bradbury EJ, Cunningham JR, Adelson DW, Jones MG, McMahon SB, Marvizón JC, Malcangio M: Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci 2001, 21: 4469–77.PubMed Lever IJ, Bradbury EJ, Cunningham JR, Adelson DW, Jones MG, McMahon SB, Marvizón JC, Malcangio M: Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci 2001, 21: 4469–77.PubMed
28.
go back to reference Balkowiec A, Katz DM: Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ . J Neurosci 2000, 20: 7417–7423.PubMed Balkowiec A, Katz DM: Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ . J Neurosci 2000, 20: 7417–7423.PubMed
29.
30.
go back to reference Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.CrossRefPubMed Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.CrossRefPubMed
31.
go back to reference Yaksh TL: Analgetic actions of intrathecal opiates in cat and primate. Brain Res 1978, 153: 205–10.CrossRefPubMed Yaksh TL: Analgetic actions of intrathecal opiates in cat and primate. Brain Res 1978, 153: 205–10.CrossRefPubMed
32.
go back to reference Bloechlinger S, Karchewski LA, Woolf CJ: Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injury. Eur J Neurosci 2004, 19: 1119–32.CrossRefPubMed Bloechlinger S, Karchewski LA, Woolf CJ: Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injury. Eur J Neurosci 2004, 19: 1119–32.CrossRefPubMed
33.
go back to reference Yi XN, Zheng LF, Zhang JW, Zhang LZ, Xu YZ, Luo G, Luo XG: Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury. Neurosci Res 2006, 56: 314–21.CrossRefPubMed Yi XN, Zheng LF, Zhang JW, Zhang LZ, Xu YZ, Luo G, Luo XG: Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury. Neurosci Res 2006, 56: 314–21.CrossRefPubMed
Metadata
Title
Brain derived neurotrophic factor (BDNF) contributes to the pain hypersensitivity following surgical incision in the rats
Authors
Chang-Qi Li
Jun-Mei Xu
Dan Liu
Jian-Yi Zhang
Ru-Ping Dai
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2008
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-4-27

Other articles of this Issue 1/2008

Molecular Pain 1/2008 Go to the issue