Skip to main content
Top
Published in: Virology Journal 1/2006

Open Access 01-12-2006 | Research

Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2

Authors: JingQi Feng, Manxin Zhang, Krystyna Mozdzanowska, Darya Zharikova, Henry Hoff, William Wunner, Robert B Couch, Walter Gerhard

Published in: Virology Journal | Issue 1/2006

Login to get access

Abstract

Background

Matrix protein 2 (M2) is an integral tetrameric membrane protein of influenza A virus (IAV). Its ectodomain (M2e) shows remarkably little diversity amongst human IAV strains. As M2e-specific antibodies (Abs) have been shown to reduce the severity of infection in animals, M2e is being studied for its capability of providing protection against a broad range of IAV strains. Presently, there is little information about the concentration of M2e-specific Abs in humans. Two previous studies made use of ELISA and Western blot against M2e peptides and recombinant M2 protein as immunosorbents, respectively, and reported Ab titers to be low or undetectable. An important caveat is that these assays may not have detected all Abs capable of binding to native tetrameric M2e. Therefore, we developed an assay likely to detect all M2e tetramer-specific Abs.

Results

We generated a HeLa cell line that expressed full length tetrameric M2 (HeLa-M2) or empty vector (HeLa-C10) under the control of the tetracycline response element. These cell lines were then used in parallel as immunosorbents in ELISA. The assay was standardized and M2e-specific Ab titers quantified by means of purified murine or chimeric (mouse variable regions, human constant regions) M2e-specific Abs in the analysis of mouse and human sera, respectively. We found that the cell-based ELISA was substantially more effective than immobilized M2e peptide in detecting M2e-specific Abs in sera of mice that had recovered from repetitive IAV infections. Still, titers remained low (< 5 μg/ml) even after two consecutive infections but increased to ~50 μg/ml after the third infection. Competition with free M2e peptide indicated that ~20% of M2e-specific Abs engendered by infection reacted with M2e peptide. In humans presenting with naturally acquired influenza virus infection, 11 of 24 paired sera showed a ≥ 4-fold increase in M2e-specific Ab titer. The Ab response appeared to be of short duration as titers were very low (average 0.2 μg/ml) in all patients at onset of infection and in controls, in spite of evidence for previous exposure to IAV.

Conclusion

The results provide convincing evidence that M2e-specific Ab-mediated protection is currently lacking or suboptimal in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lamb RA, Zebedee SL, Richardson CD: Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 1985,40(3):627-633. 10.1016/0092-8674(85)90211-9CrossRefPubMed Lamb RA, Zebedee SL, Richardson CD: Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 1985,40(3):627-633. 10.1016/0092-8674(85)90211-9CrossRefPubMed
2.
go back to reference Holsinger LJ, Lamb RA: Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 1991,183(1):32-43. 10.1016/0042-6822(91)90115-RCrossRefPubMed Holsinger LJ, Lamb RA: Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 1991,183(1):32-43. 10.1016/0042-6822(91)90115-RCrossRefPubMed
3.
go back to reference Sugrue RJ, Hay AJ: Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 1991,180(2):617-624. 10.1016/0042-6822(91)90075-MCrossRefPubMed Sugrue RJ, Hay AJ: Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 1991,180(2):617-624. 10.1016/0042-6822(91)90075-MCrossRefPubMed
4.
go back to reference Mozdzanowska K, Maiese K, Furchner M, Gerhard W: Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology 1999,254(1):138-146. 10.1006/viro.1998.9534CrossRefPubMed Mozdzanowska K, Maiese K, Furchner M, Gerhard W: Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology 1999,254(1):138-146. 10.1006/viro.1998.9534CrossRefPubMed
5.
go back to reference Zebedee SL, Lamb RA: Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 1988,62(8):2762-2772.PubMedCentralPubMed Zebedee SL, Lamb RA: Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 1988,62(8):2762-2772.PubMedCentralPubMed
6.
go back to reference Pinto LH, Holsinger LJ, Lamb RA: Influenza virus M2 protein has ion channel activity. Cell 1992,69(3):517-528. 10.1016/0092-8674(92)90452-ICrossRefPubMed Pinto LH, Holsinger LJ, Lamb RA: Influenza virus M2 protein has ion channel activity. Cell 1992,69(3):517-528. 10.1016/0092-8674(92)90452-ICrossRefPubMed
7.
go back to reference Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, Hay AJ: Specific structural alteration of the influenza haemagglutinin by amantadine. Embo J 1990,9(11):3469-3476.PubMedCentralPubMed Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, Hay AJ: Specific structural alteration of the influenza haemagglutinin by amantadine. Embo J 1990,9(11):3469-3476.PubMedCentralPubMed
8.
go back to reference Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP: Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol 1993, 74 ( Pt 1): 143-146.CrossRef Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP: Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol 1993, 74 ( Pt 1): 143-146.CrossRef
9.
go back to reference Liu W, Li H, Chen YH: N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol 2003,35(2):141-146. 10.1016/S0928-8244(03)00009-9CrossRefPubMed Liu W, Li H, Chen YH: N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol 2003,35(2):141-146. 10.1016/S0928-8244(03)00009-9CrossRefPubMed
10.
go back to reference Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr., Gerhard W: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003,21(19-20):2616-2626. 10.1016/S0264-410X(03)00040-9CrossRefPubMed Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr., Gerhard W: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003,21(19-20):2616-2626. 10.1016/S0264-410X(03)00040-9CrossRefPubMed
11.
go back to reference De Filette M, Min Jou W, Birkett A, Lyons K, Schultz B, Tonkyro A, Resch S, Fiers W: Universal influenza A vaccine: optimization of M2-based constructs. Virology 2005,337(1):149-161. 10.1016/j.virol.2005.04.004CrossRefPubMed De Filette M, Min Jou W, Birkett A, Lyons K, Schultz B, Tonkyro A, Resch S, Fiers W: Universal influenza A vaccine: optimization of M2-based constructs. Virology 2005,337(1):149-161. 10.1016/j.virol.2005.04.004CrossRefPubMed
12.
go back to reference Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W: A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999,5(10):1157-1163. 10.1038/13484CrossRefPubMed Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W: A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999,5(10):1157-1163. 10.1038/13484CrossRefPubMed
13.
go back to reference Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies ME, Liao J, Emini EA, Shiver JW: Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 2004,22(23-24):2993-3003. 10.1016/j.vaccine.2004.02.021CrossRefPubMed Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies ME, Liao J, Emini EA, Shiver JW: Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 2004,22(23-24):2993-3003. 10.1016/j.vaccine.2004.02.021CrossRefPubMed
14.
go back to reference Black RA, Rota PA, Gorodkova N, Cramer A, Klenk HD, Kendal AP: Production of the M2 protein of influenza A virus in insect cells is enhanced in the presence of amantadine. J Gen Virol 1993, 74 ( Pt 8): 1673-1677.CrossRef Black RA, Rota PA, Gorodkova N, Cramer A, Klenk HD, Kendal AP: Production of the M2 protein of influenza A virus in insect cells is enhanced in the presence of amantadine. J Gen Virol 1993, 74 ( Pt 8): 1673-1677.CrossRef
15.
go back to reference Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ: Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 1995,13(15):1399-1402. 10.1016/0264-410X(95)92777-YCrossRefPubMed Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ: Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 1995,13(15):1399-1402. 10.1016/0264-410X(95)92777-YCrossRefPubMed
16.
go back to reference Zhang M, Zharikova D, Mozdzanowska K, Otvos L, Gerhard W: Fine specificity and sequence of antibodies directed against the ectodomain of matrix protein 2 of influenza A virus. Mol Immunol 2006,43(14):2195-2206. 10.1016/j.molimm.2005.12.015CrossRefPubMed Zhang M, Zharikova D, Mozdzanowska K, Otvos L, Gerhard W: Fine specificity and sequence of antibodies directed against the ectodomain of matrix protein 2 of influenza A virus. Mol Immunol 2006,43(14):2195-2206. 10.1016/j.molimm.2005.12.015CrossRefPubMed
18.
go back to reference Kilbourne ED, Cerini CP, Khan MW, Mitchell JW Jr., Ogra PL: Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. J Immunol 1987,138(9):3010-3013.PubMed Kilbourne ED, Cerini CP, Khan MW, Mitchell JW Jr., Ogra PL: Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. J Immunol 1987,138(9):3010-3013.PubMed
19.
go back to reference Johansson BE, Moran TM, Bona CA, Popple SW, Kilbourne ED: Immunologic response to influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. II. Sequential infection of mice simulates human experience. J Immunol 1987,139(6):2010-2014.PubMed Johansson BE, Moran TM, Bona CA, Popple SW, Kilbourne ED: Immunologic response to influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. II. Sequential infection of mice simulates human experience. J Immunol 1987,139(6):2010-2014.PubMed
20.
go back to reference Johansson BE, Kilbourne ED: Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J Virol 1993,67(10):5721-5723.PubMedCentralPubMed Johansson BE, Kilbourne ED: Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J Virol 1993,67(10):5721-5723.PubMedCentralPubMed
21.
go back to reference Schutze MP, Deriaud E, Przewlocki G, LeClerc C: Carrier-induced epitopic suppression is initiated through clonal dominance. J Immunol 1989,142(8):2635-2640.PubMed Schutze MP, Deriaud E, Przewlocki G, LeClerc C: Carrier-induced epitopic suppression is initiated through clonal dominance. J Immunol 1989,142(8):2635-2640.PubMed
22.
go back to reference Johansson BE, Kilbourne ED: Immunization with purified N1 and N2 influenza virus neuraminidases demonstrates cross-reactivity without antigenic competition. Proc Natl Acad Sci U S A 1994,91(6):2358-2361. 10.1073/pnas.91.6.2358PubMedCentralCrossRefPubMed Johansson BE, Kilbourne ED: Immunization with purified N1 and N2 influenza virus neuraminidases demonstrates cross-reactivity without antigenic competition. Proc Natl Acad Sci U S A 1994,91(6):2358-2361. 10.1073/pnas.91.6.2358PubMedCentralCrossRefPubMed
23.
go back to reference Demotz S, Barbey C, Corradin G, Amoroso A, Lanzavecchia A: The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur J Immunol 1993,23(2):425-432.CrossRefPubMed Demotz S, Barbey C, Corradin G, Amoroso A, Lanzavecchia A: The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur J Immunol 1993,23(2):425-432.CrossRefPubMed
24.
go back to reference Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM: Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000,164(3):1617-1624.CrossRefPubMed Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM: Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000,164(3):1617-1624.CrossRefPubMed
25.
go back to reference Coloma MJ, Hastings A, Wims LA, Morrison SL: Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J Immunol Methods 1992,152(1):89-104. 10.1016/0022-1759(92)90092-8CrossRefPubMed Coloma MJ, Hastings A, Wims LA, Morrison SL: Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J Immunol Methods 1992,152(1):89-104. 10.1016/0022-1759(92)90092-8CrossRefPubMed
26.
go back to reference Kearney JF, Radbruch A, Liesegang B, Rajewsky K: A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol 1979,123(4):1548-1550.PubMed Kearney JF, Radbruch A, Liesegang B, Rajewsky K: A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol 1979,123(4):1548-1550.PubMed
Metadata
Title
Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2
Authors
JingQi Feng
Manxin Zhang
Krystyna Mozdzanowska
Darya Zharikova
Henry Hoff
William Wunner
Robert B Couch
Walter Gerhard
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2006
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-3-102

Other articles of this Issue 1/2006

Virology Journal 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.