Skip to main content
Top
Published in: Virology Journal 1/2014

Open Access 01-12-2014 | Research

Pathogenicity and tissue distribution of grass carp reovirus after intraperitoneal administration

Authors: Hong-Ru Liang, Yong-Gang Li, Wei-Wei Zeng, Ying-Ying Wang, Qing Wang, Shu-Qin Wu

Published in: Virology Journal | Issue 1/2014

Login to get access

Abstract

Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhage and causes significant loss of fingerlings. However, little is known about how the virus is distributed in organs and tissues. The aim of the present study was to investigate the distribution of different GCRV stains in tissues and organs of grass carp. The pathogenicity and tissue distribution of GCRV were monitored after intraperitoneal administration. The study showed a distribution of GCRV in different tissues and organs, particularly in the liver, spleen, kidney, intestine, and muscle, which had a higher number of viral RNA copies during the sixth to ninth days. The kidney had the highest numbers of viral RNA copies, as high as 24000 copies. Until the fourteenth day, nearly no viral RNA copies could be detected. This study defined the virus distribution in different tissues of grass carp inoculated by i.p. and supplied clues for the pathogenesis of GCRV.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen C, Sun X, Liao L, Luo S, Li Z, Zhang X, Wang Y, Guo Q, Fang Q, Dai H: Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgM from Ctenopharyngodon idella. Sci China Life Sci 2013, 56: 59-65. 10.1007/s11427-012-4425-5PubMedCrossRef Chen C, Sun X, Liao L, Luo S, Li Z, Zhang X, Wang Y, Guo Q, Fang Q, Dai H: Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgM from Ctenopharyngodon idella. Sci China Life Sci 2013, 56: 59-65. 10.1007/s11427-012-4425-5PubMedCrossRef
2.
go back to reference Wang Q, Zeng W, Liu C, Zhang C, Wang Y, Shi C, Wu S: Complete genome sequence of a reovirus isolated from grass carp, indicating different genotypes of GCRV in China. J Virol 2012, 86: 12466. 10.1128/JVI.02333-12PubMedPubMedCentralCrossRef Wang Q, Zeng W, Liu C, Zhang C, Wang Y, Shi C, Wu S: Complete genome sequence of a reovirus isolated from grass carp, indicating different genotypes of GCRV in China. J Virol 2012, 86: 12466. 10.1128/JVI.02333-12PubMedPubMedCentralCrossRef
3.
go back to reference Tao Qiu R-HL, Zhang J, Zhu Z-Y: Complete nucleotide sequence of the S10 genome segment of grass carp reovirus (GCRV). Dis Aquat Organ 2001, 44: 69-74.CrossRef Tao Qiu R-HL, Zhang J, Zhu Z-Y: Complete nucleotide sequence of the S10 genome segment of grass carp reovirus (GCRV). Dis Aquat Organ 2001, 44: 69-74.CrossRef
4.
go back to reference Shao L, Sun X, Fang Q: Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity. Virol J 2011, 8: 347. 10.1186/1743-422X-8-347PubMedPubMedCentralCrossRef Shao L, Sun X, Fang Q: Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity. Virol J 2011, 8: 347. 10.1186/1743-422X-8-347PubMedPubMedCentralCrossRef
5.
go back to reference Fan C, Zhang L-l, Lei C-f, Fang Q: Expression and identification of inclusion forming-related domain of NS80 nonstructural protein of grass carp reovirus. Virol Sin 2009, 24: 194-201. 10.1007/s12250-009-3028-1CrossRef Fan C, Zhang L-l, Lei C-f, Fang Q: Expression and identification of inclusion forming-related domain of NS80 nonstructural protein of grass carp reovirus. Virol Sin 2009, 24: 194-201. 10.1007/s12250-009-3028-1CrossRef
6.
go back to reference Ma J, Wang W, Zeng L, Fan Y, Xu J, Zhou Y: Inhibition of the replication of grass carp reovirus in CIK cells with plasmid-transcribed shRNAs. J Virol Methods 2011, 175: 182-187. 10.1016/j.jviromet.2011.05.008PubMedCrossRef Ma J, Wang W, Zeng L, Fan Y, Xu J, Zhou Y: Inhibition of the replication of grass carp reovirus in CIK cells with plasmid-transcribed shRNAs. J Virol Methods 2011, 175: 182-187. 10.1016/j.jviromet.2011.05.008PubMedCrossRef
7.
go back to reference Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH: Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008, 382: 213-222. 10.1016/j.jmb.2008.06.075PubMedPubMedCentralCrossRef Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH: Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol 2008, 382: 213-222. 10.1016/j.jmb.2008.06.075PubMedPubMedCentralCrossRef
8.
9.
go back to reference Cai L, Sun X, Shao L, Fang Q: Functional investigation of grass carp reovirus nonstructural protein NS80. Virol J 2011, 8: 168. 10.1186/1743-422X-8-168PubMedPubMedCentralCrossRef Cai L, Sun X, Shao L, Fang Q: Functional investigation of grass carp reovirus nonstructural protein NS80. Virol J 2011, 8: 168. 10.1186/1743-422X-8-168PubMedPubMedCentralCrossRef
10.
go back to reference Zhang L, Luo Q, Fang Q, Wang Y: An improved RT-PCR assay for rapid and sensitive detection of grass carp reovirus. J Virol Methods 2010, 169: 28-33. 10.1016/j.jviromet.2010.06.009PubMedCrossRef Zhang L, Luo Q, Fang Q, Wang Y: An improved RT-PCR assay for rapid and sensitive detection of grass carp reovirus. J Virol Methods 2010, 169: 28-33. 10.1016/j.jviromet.2010.06.009PubMedCrossRef
11.
go back to reference Faber M, Li J, Kean RB, Hooper DC, Alugupalli KR, Dietzschold B: Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A 2009, 106: 11300-11305. 10.1073/pnas.0905640106PubMedPubMedCentralCrossRef Faber M, Li J, Kean RB, Hooper DC, Alugupalli KR, Dietzschold B: Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A 2009, 106: 11300-11305. 10.1073/pnas.0905640106PubMedPubMedCentralCrossRef
12.
go back to reference Jinyang Zhang X, Zan J, Wu Y, Chengjin Y, Ruan X, Zhoua J: Cellular chaperonin CCT contributes to rabies virus replication during infection. J Virol 2013,87(13):7608-7621. 10.1128/JVI.03186-12PubMedPubMedCentralCrossRef Jinyang Zhang X, Zan J, Wu Y, Chengjin Y, Ruan X, Zhoua J: Cellular chaperonin CCT contributes to rabies virus replication during infection. J Virol 2013,87(13):7608-7621. 10.1128/JVI.03186-12PubMedPubMedCentralCrossRef
13.
go back to reference Jiang Y: Hemorrhagic disease of grass carp status of outbreaks, diagnosis, surveillance, and research. Bamidgeh 2009, 61: 188-197. Jiang Y: Hemorrhagic disease of grass carp status of outbreaks, diagnosis, surveillance, and research. Bamidgeh 2009, 61: 188-197.
Metadata
Title
Pathogenicity and tissue distribution of grass carp reovirus after intraperitoneal administration
Authors
Hong-Ru Liang
Yong-Gang Li
Wei-Wei Zeng
Ying-Ying Wang
Qing Wang
Shu-Qin Wu
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2014
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-11-178

Other articles of this Issue 1/2014

Virology Journal 1/2014 Go to the issue