Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2006

Open Access 01-12-2006 | Research

Effect of lateral perturbations on psychophysical acceleration detection thresholds

Authors: Samantha J Richerson, Scott M Morstatt, Kristopher K O'Neal, Gloria Patrick, Charles J Robinson

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2006

Login to get access

Abstract

Background

In understanding how the human body perceives and responds to small slip-like motions, information on how one senses the slip is essential. The effect of aging and plantar sensory loss on detection of a slip can also be studied. Using psychophysical procedures, acceleration detection thresholds of small lateral whole-body perturbations were measured for healthy young adults (HYA), healthy older adults (HOA) and older adults with diabetic neuropathy (DOA). It was hypothesized that young adults would require smaller accelerations than HOA's and DOA's to detect perturbations at a given displacement.

Methods

Acceleration detection thresholds to whole-body lateral perturbations of 1, 2, 4, 8, and 16 mm were measured for HYAs, HOAs, and DOAs using psychophysical procedures including a two-alternative forced choice protocol. Based on the subject's detection of the previous trial, the acceleration magnitude of the subsequent trial was increased or decreased according to the parameter estimation by sequential testing methodology. This stair-stepping procedure allowed acceleration thresholds to be measured for each displacement.

Results

Results indicate that for lateral displacements of 1 and 2 mm, HOAs and DOAs have significantly higher acceleration detection thresholds than young adults. At displacements of 8 and 16 mm, no differences in threshold were found among groups or between the two perturbation distances. The relationship between the acceleration threshold and perturbation displacement is of particular interest. Peak acceleration thresholds of approximately 10 mm/s2 were found at displacements of 2, 4, 8, and 16 mm for HYAs; at displacements of 4, 8, and 16 mm for HOAs; and at displacements of 8 and 16 mm for DOAs. Thus, 2, 4, and 8 mm appear to be critical breakpoints for HYAs, HOAs, and DOAs respectively, where the psychometric curve deviated from a negative power law relationship. These critical breakpoints likely indicate a change in the physiology of the system as it responds to the stimuli.

Conclusion

As a function of age, the displacement at which the group deviates from a negative power law relationship increases from 2 mm to 4 mm. Additionally, the displacement at which subjects with peripheral sensory deficits deviate from the negative power law relations increases to 8 mm. These increases as a function of age and peripheral sensory loss may help explain the mechanism of falls in the elderly and diabetic populations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Galanter E: Contemporary psychophysics. In New directions in psychology. Edited by: Brown R et al. New York: Holt, Rinehart and Winston; 1962. Galanter E: Contemporary psychophysics. In New directions in psychology. Edited by: Brown R et al. New York: Holt, Rinehart and Winston; 1962.
2.
go back to reference McBurney DB, Collings VB: Introduction to Sensation /Perception. 2nd edition. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1984. McBurney DB, Collings VB: Introduction to Sensation /Perception. 2nd edition. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1984.
3.
go back to reference McBurney DH, Pfaffmann C: Gustatory adaptation to saliva and sodium chloride. J Exp Psych 1963, 65: 523-529.CrossRef McBurney DH, Pfaffmann C: Gustatory adaptation to saliva and sodium chloride. J Exp Psych 1963, 65: 523-529.CrossRef
4.
go back to reference Mozell MM: The chemical senses II. Olfaction. In Woodworth and Schlosberg's Experimental psychology. 3rd edition. Edited by: Kling JW, Riggs LR. New York: Holt, Rinehard and Winston; 1971. Mozell MM: The chemical senses II. Olfaction. In Woodworth and Schlosberg's Experimental psychology. 3rd edition. Edited by: Kling JW, Riggs LR. New York: Holt, Rinehard and Winston; 1971.
5.
go back to reference Weinstein S: Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In The skin senses. Edited by: Kenshalo DR. Springfield, IL: Chas C. Thomas; 1961. Weinstein S: Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In The skin senses. Edited by: Kenshalo DR. Springfield, IL: Chas C. Thomas; 1961.
6.
go back to reference Guedry FE: Psychophysics of vestibular vensation. In Kronhuber, H.H. handbook of sensory physiology. Berlin: Springer-Verlag; 1976. Guedry FE: Psychophysics of vestibular vensation. In Kronhuber, H.H. handbook of sensory physiology. Berlin: Springer-Verlag; 1976.
7.
go back to reference Benson AJ, Spencer MB, Stott JR: Threshold for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 1986,57(11):1088-96.PubMed Benson AJ, Spencer MB, Stott JR: Threshold for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 1986,57(11):1088-96.PubMed
8.
go back to reference Fitzpatrick R, McCloskey D: Proprioceptive, visual, and vestibular threshold for the perception of sway during standing in humans. J Physiol 1994,478(Pt 1):173-186.PubMedCentralCrossRefPubMed Fitzpatrick R, McCloskey D: Proprioceptive, visual, and vestibular threshold for the perception of sway during standing in humans. J Physiol 1994,478(Pt 1):173-186.PubMedCentralCrossRefPubMed
9.
go back to reference Brown LA, Jensen JL, Korff T, Woollacott MH: The translating platform paradigm: perturbations displacement waveform alters the postural response. Gait Posture 2001,14(3):256-263. 10.1016/S0966-6362(01)00131-XCrossRefPubMed Brown LA, Jensen JL, Korff T, Woollacott MH: The translating platform paradigm: perturbations displacement waveform alters the postural response. Gait Posture 2001,14(3):256-263. 10.1016/S0966-6362(01)00131-XCrossRefPubMed
10.
go back to reference Robinson CJ, Purucker MC, Faulkner LW: Design, control, and characterization of a sliding linear investigative platform for analyzing lower limb stability (SLIP-FALLS). IEEE Trans Rehab Engr 1998,6(3):334-349. 10.1109/86.712232CrossRef Robinson CJ, Purucker MC, Faulkner LW: Design, control, and characterization of a sliding linear investigative platform for analyzing lower limb stability (SLIP-FALLS). IEEE Trans Rehab Engr 1998,6(3):334-349. 10.1109/86.712232CrossRef
11.
go back to reference Richerson SJ, Faulkner LW, Robinson CJ, Redfern MS, Prucker MC: Acceleration threshold detection during short anterior and posterior perturbations on a translating platform. Gait Posture 2003, 18: 11-19. 10.1016/S0966-6362(02)00189-3CrossRefPubMed Richerson SJ, Faulkner LW, Robinson CJ, Redfern MS, Prucker MC: Acceleration threshold detection during short anterior and posterior perturbations on a translating platform. Gait Posture 2003, 18: 11-19. 10.1016/S0966-6362(02)00189-3CrossRefPubMed
12.
go back to reference Faulkner L: Psychophysical detection thresholds and interactions among acceleration, velocity and displacement, produced by young adults while standing on a platform horizontally translated under ultra-low vibration conditions. Dissertation Univ Pittsburg Charles J Robinson, Advisor 2003. Faulkner L: Psychophysical detection thresholds and interactions among acceleration, velocity and displacement, produced by young adults while standing on a platform horizontally translated under ultra-low vibration conditions. Dissertation Univ Pittsburg Charles J Robinson, Advisor 2003.
13.
go back to reference Maki BE, Holliday PJ, Topper AK: A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol 1994,49(2):M72-84.CrossRefPubMed Maki BE, Holliday PJ, Topper AK: A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol 1994,49(2):M72-84.CrossRefPubMed
14.
go back to reference Allum JH, Carpenter MG, Honegger F, Adkin AL, Bloen BR: Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol 2002,542(pt 2):643-63. 10.1113/jphysiol.2001.015644PubMedCentralCrossRefPubMed Allum JH, Carpenter MG, Honegger F, Adkin AL, Bloen BR: Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol 2002,542(pt 2):643-63. 10.1113/jphysiol.2001.015644PubMedCentralCrossRefPubMed
15.
go back to reference Ahmmed AU, Mackenzie IJ: Posture changes in diabetes mellitus. J Laryngol Otol 2003,117(5):358-64. 10.1258/002221503321626393CrossRefPubMed Ahmmed AU, Mackenzie IJ: Posture changes in diabetes mellitus. J Laryngol Otol 2003,117(5):358-64. 10.1258/002221503321626393CrossRefPubMed
16.
go back to reference Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M: Postural stability in diabetic polyneuropathy. Diabetes Care 1995,18(5):638-645.CrossRefPubMed Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M: Postural stability in diabetic polyneuropathy. Diabetes Care 1995,18(5):638-645.CrossRefPubMed
17.
go back to reference Corriveau H, Prince F, Hébert R, Raîche M, Tessier D, Maheux P, Ardilouze JL: Evaluation of postural stability in elderly with diabetic neuropathy. Diabetes Care 2002,23(8):1187-91.CrossRef Corriveau H, Prince F, Hébert R, Raîche M, Tessier D, Maheux P, Ardilouze JL: Evaluation of postural stability in elderly with diabetic neuropathy. Diabetes Care 2002,23(8):1187-91.CrossRef
18.
go back to reference Cavanagh P, Simoneau GG, Ulbrecht JS: Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. J Biomech 1993,26(Suppl 1):23-40. 10.1016/0021-9290(93)90077-RCrossRefPubMed Cavanagh P, Simoneau GG, Ulbrecht JS: Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. J Biomech 1993,26(Suppl 1):23-40. 10.1016/0021-9290(93)90077-RCrossRefPubMed
19.
20.
go back to reference Findlay JM, Walker R, Kentridge RE, (Ed): Eye Movement Research. North Holland: Springer; 1995. Findlay JM, Walker R, Kentridge RE, (Ed): Eye Movement Research. North Holland: Springer; 1995.
21.
go back to reference Taylor M, Creelman C: PEST: efficient estimates on probability functions. J of Acoust Soc Am 1967,41(4):782-787. 10.1121/1.1910407CrossRef Taylor M, Creelman C: PEST: efficient estimates on probability functions. J of Acoust Soc Am 1967,41(4):782-787. 10.1121/1.1910407CrossRef
22.
go back to reference Balasubramanian V: Postural balance and acceleration threshold detection for anterior horizontal translations in diabetic and non-diabetic elderly. Dissertation, Lousiana Tech University 2001. Balasubramanian V: Postural balance and acceleration threshold detection for anterior horizontal translations in diabetic and non-diabetic elderly. Dissertation, Lousiana Tech University 2001.
23.
go back to reference Winter DA: Human balance and posture control during standing and walking. Gait Posture 1995,3(4):193-214. 10.1016/0966-6362(96)82849-9CrossRef Winter DA: Human balance and posture control during standing and walking. Gait Posture 1995,3(4):193-214. 10.1016/0966-6362(96)82849-9CrossRef
24.
go back to reference Henry SM, Fung J, Horak FB: Control of stance during lateral and anterior/posterior surface translations. IEEE Trans Rehab Engr 1998,6(1):32-42. 10.1109/86.662618CrossRef Henry SM, Fung J, Horak FB: Control of stance during lateral and anterior/posterior surface translations. IEEE Trans Rehab Engr 1998,6(1):32-42. 10.1109/86.662618CrossRef
25.
go back to reference Henry SM, Fung J, Horak FB: EMG responses to maintain stance during multi-directional surface translations. J Neurophysiol 1998,80(1):1939-50.PubMed Henry SM, Fung J, Horak FB: EMG responses to maintain stance during multi-directional surface translations. J Neurophysiol 1998,80(1):1939-50.PubMed
26.
go back to reference Baloh RW, Jacobson KM, Enreitto JA, Corona S, Honrubia V: Balance disorders in older persons: quantification with posturography. Otolaryngol Head and Neck Surg 1998,119(1):89-92. 10.1016/S0194-5998(98)70177-9CrossRef Baloh RW, Jacobson KM, Enreitto JA, Corona S, Honrubia V: Balance disorders in older persons: quantification with posturography. Otolaryngol Head and Neck Surg 1998,119(1):89-92. 10.1016/S0194-5998(98)70177-9CrossRef
27.
go back to reference Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O: Visual, vestibular, and somatorsensory contributions to balance control in the older adult. J Gerontology 1989,44(4):M118-127.CrossRef Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O: Visual, vestibular, and somatorsensory contributions to balance control in the older adult. J Gerontology 1989,44(4):M118-127.CrossRef
28.
go back to reference Panzer VP, Bandinelli S, Hallett M: Biomechanical assessment of quiet standing changes associated with aging. Arch Phys Med Rehabil 1995,76(2):151-7. 10.1016/S0003-9993(95)80024-7CrossRefPubMed Panzer VP, Bandinelli S, Hallett M: Biomechanical assessment of quiet standing changes associated with aging. Arch Phys Med Rehabil 1995,76(2):151-7. 10.1016/S0003-9993(95)80024-7CrossRefPubMed
29.
go back to reference Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebst BM: Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Engr 1996,43(9):956-966. 10.1109/10.532130CrossRef Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebst BM: Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Engr 1996,43(9):956-966. 10.1109/10.532130CrossRef
30.
go back to reference Rietdyk S, Patla AE, Winter DA, Ishac MG, Little CE: Balance recovery from medio-lateral perturbations of the upper body during standing. J Biomechanics 1999, 32: 1149-1158. 10.1016/S0021-9290(99)00116-5CrossRef Rietdyk S, Patla AE, Winter DA, Ishac MG, Little CE: Balance recovery from medio-lateral perturbations of the upper body during standing. J Biomechanics 1999, 32: 1149-1158. 10.1016/S0021-9290(99)00116-5CrossRef
31.
go back to reference Simmons RW, Richardson C, Pozos R: Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes Res and Clin Pract 1997,36(3):153-160. 10.1016/S0168-8227(97)00044-2CrossRef Simmons RW, Richardson C, Pozos R: Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes Res and Clin Pract 1997,36(3):153-160. 10.1016/S0168-8227(97)00044-2CrossRef
32.
go back to reference Van den Bosch CG, Gilsing MG, Lee SG, Richardson JK, Ashton-Miller JA: Peripheral neuropathy effect on ankle inversion and eversion detection thresholds. Arch Phys Med Rehabil 1995,76(9):850-856. 10.1016/S0003-9993(95)80551-6CrossRefPubMed Van den Bosch CG, Gilsing MG, Lee SG, Richardson JK, Ashton-Miller JA: Peripheral neuropathy effect on ankle inversion and eversion detection thresholds. Arch Phys Med Rehabil 1995,76(9):850-856. 10.1016/S0003-9993(95)80551-6CrossRefPubMed
Metadata
Title
Effect of lateral perturbations on psychophysical acceleration detection thresholds
Authors
Samantha J Richerson
Scott M Morstatt
Kristopher K O'Neal
Gloria Patrick
Charles J Robinson
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2006
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-3-2

Other articles of this Issue 1/2006

Journal of NeuroEngineering and Rehabilitation 1/2006 Go to the issue