Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling

Authors: Michael R Due, Andrew D Piekarz, Natalie Wilson, Polina Feldman, Matthew S Ripsch, Sherry Chavez, Hang Yin, Rajesh Khanna, Fletcher A White

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Multiple adverse events are associated with the use of morphine for the treatment of chronic non-cancer pain, including opioid-induced hyperalgesia (OIH). Mechanisms of OIH are independent of opioid tolerance and may involve the morphine metabolite morphine-3-glucuronide (M3G). M3G exhibits limited affinity for opioid receptors and no analgesic effect. Previous reports suggest that M3G can act via the Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) heterodimer in the central nervous system to elicit pain.

Methods

Immunoblot and immunocytochemistry methods were used to characterize the protein expression of TLR4 present in lumbar dorsal root ganglion (DRG). Using in vitro intracellular calcium and current clamp techniques, we determined whether TLR4 activation as elicited by the prototypical agonists of TLR4, lipopolysaccharide (LPS) and M3G, contributed to changes in intracellular calcium and increased excitation. Rodents were also injected with M3G to determine the degree to which M3G-induced tactile hyperalgesia could be diminished using either a small molecule inhibitor of the MD-2/TLR4 complex in rats or TLR4 knockout mice. Whole cell voltage-clamp recordings were made from small- and medium-diameter DRG neurons (25 μm < DRG diameter <45 μm) for both control and M3G-treated neurons to determine the potential influence on voltage-gated sodium channels (NaVs).

Results

We observed that TLR4 immunoreactivity was present in peptidergic and non-peptidergic sensory neurons in the DRG. Non-neuronal cells in the DRG lacked evidence of TLR4 expression. Approximately 15% of assayed small- and medium-diameter sensory neurons exhibited a change in intracellular calcium following LPS administration. Both nociceptive and non-nociceptive neurons were observed to respond, and approximately 40% of these cells were capsaicin-insensitive. Increased excitability observed in sensory neurons following LPS or M3G could be eliminated using Compound 15, a small molecule inhibitor of the TLR4/MD-2 complex. Likewise, systemic injection of M3G induced rapid tactile, but not thermal, nociceptive behavioral changes in the rat, which were prevented by pre-treating animals with Compound 15. Unlike TLR4 wild-type mice, TLR4 knockout mice did not exhibit M3G-induced hyperalgesia. As abnormal pain sensitivity is often associated with NaVs, we predicted that M3G acting via the MD-2/TLR4 complex may affect the density and gating of NaVs in sensory neurons. We show that M3G increases tetrodotoxin-sensitive and tetrodotoxin-resistant (NaV1.9) current densities.

Conclusions

These outcomes provide evidence that M3G may play a role in OIH via the TLR4/MD-2 heterodimer complex and biophysical properties of tetrodotoxin-sensitive and tetrodotoxin-resistant NaV currents.
Literature
1.
go back to reference Coughtrie MW, Ask B, Rane A, Burchell B, Hume R: The enantioselective glucuronidation of morphine in rats and humans. Evidence for the involvement of more than one UDP-glucuronosyltransferase isoenzyme. Biochem Pharmacol 1989, 38:3273–3280.CrossRefPubMed Coughtrie MW, Ask B, Rane A, Burchell B, Hume R: The enantioselective glucuronidation of morphine in rats and humans. Evidence for the involvement of more than one UDP-glucuronosyltransferase isoenzyme. Biochem Pharmacol 1989, 38:3273–3280.CrossRefPubMed
2.
go back to reference Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, Tephly T, Dahan A, Beijnen JH, Borst P: Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A 2005, 102:7274–7279.CrossRefPubMedPubMedCentral Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, Tephly T, Dahan A, Beijnen JH, Borst P: Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A 2005, 102:7274–7279.CrossRefPubMedPubMedCentral
3.
go back to reference Osborne R, Joel S, Trew D, Slevin M: Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990, 47:12–19.CrossRefPubMed Osborne R, Joel S, Trew D, Slevin M: Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990, 47:12–19.CrossRefPubMed
4.
go back to reference Hasselstrom J, Sawe J: Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet 1993, 24:344–354.CrossRef Hasselstrom J, Sawe J: Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet 1993, 24:344–354.CrossRef
5.
go back to reference van Dorp EL, Romberg R, Sarton E, Bovill JG, Dahan A: Morphine-6-glucuronide: morphine’s successor for postoperative pain relief? Anesth Analg 2006, 102:1789–1797.CrossRefPubMed van Dorp EL, Romberg R, Sarton E, Bovill JG, Dahan A: Morphine-6-glucuronide: morphine’s successor for postoperative pain relief? Anesth Analg 2006, 102:1789–1797.CrossRefPubMed
6.
go back to reference Labella FS, Pinsky C, Havlicek V: Morphine derivatives with diminished opiate receptor potency show enhanced central excitatory activity. Brain Res 1979, 174:263–271.CrossRefPubMed Labella FS, Pinsky C, Havlicek V: Morphine derivatives with diminished opiate receptor potency show enhanced central excitatory activity. Brain Res 1979, 174:263–271.CrossRefPubMed
7.
go back to reference Hewett K, Dickenson AH, McQuay HJ: Lack of effect of morphine-3-glucuronide on the spinal antinociceptive actions of morphine in the rat: an electrophysiological study. Pain 1993, 53:59–63.CrossRefPubMed Hewett K, Dickenson AH, McQuay HJ: Lack of effect of morphine-3-glucuronide on the spinal antinociceptive actions of morphine in the rat: an electrophysiological study. Pain 1993, 53:59–63.CrossRefPubMed
8.
go back to reference Bartlett SE, Cramond T, Smith MT: The excitatory effects of morphine-3-glucuronide are attenuated by LY274614, a competitive NMDA receptor antagonist, and by midazolam, an agonist at the benzodiazepine site on the GABAA receptor complex. Life Sci 1994, 54:687–694.CrossRefPubMed Bartlett SE, Cramond T, Smith MT: The excitatory effects of morphine-3-glucuronide are attenuated by LY274614, a competitive NMDA receptor antagonist, and by midazolam, an agonist at the benzodiazepine site on the GABAA receptor complex. Life Sci 1994, 54:687–694.CrossRefPubMed
9.
go back to reference Lewis SS, Hutchinson MR, Rezvani N, Loram LC, Zhang Y, Maier SF, Rice KC, Watkins LR: Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 2010, 165:569–583.CrossRefPubMedPubMedCentral Lewis SS, Hutchinson MR, Rezvani N, Loram LC, Zhang Y, Maier SF, Rice KC, Watkins LR: Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 2010, 165:569–583.CrossRefPubMedPubMedCentral
10.
go back to reference Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, et al.: Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010, 24:83–95.CrossRefPubMed Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, et al.: Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010, 24:83–95.CrossRefPubMed
11.
go back to reference Hua XY, Chen P, Fox A, Myers RR: Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1beta and tumor necrosis factor-alpha. J Neurosci 1996, 16:4742–4748.PubMed Hua XY, Chen P, Fox A, Myers RR: Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1beta and tumor necrosis factor-alpha. J Neurosci 1996, 16:4742–4748.PubMed
12.
go back to reference Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM: LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 2011, 90:759–764.CrossRefPubMed Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM: LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 2011, 90:759–764.CrossRefPubMed
13.
go back to reference Bevan DE, Martinko AJ, Loram LC, Stahl JA, Taylor FR, Joshee S, Watkins LR, Yin H: Selection, Preparation, and Evaluation of Small- Molecule Inhibitors of Toll-Like Receptor 4. ACS Med Chem Lett 2010, 1:194–198.CrossRefPubMedPubMedCentral Bevan DE, Martinko AJ, Loram LC, Stahl JA, Taylor FR, Joshee S, Watkins LR, Yin H: Selection, Preparation, and Evaluation of Small- Molecule Inhibitors of Toll-Like Receptor 4. ACS Med Chem Lett 2010, 1:194–198.CrossRefPubMedPubMedCentral
14.
go back to reference Moran TD, Smith PA: Morphine-3beta-D-glucuronide suppresses inhibitory synaptic transmission in rat substantia gelatinosa. J Pharmacol Exp Ther 2002, 302:568–576.CrossRefPubMed Moran TD, Smith PA: Morphine-3beta-D-glucuronide suppresses inhibitory synaptic transmission in rat substantia gelatinosa. J Pharmacol Exp Ther 2002, 302:568–576.CrossRefPubMed
15.
go back to reference Hemstapat K, Monteith GR, Smith D, Smith MT: Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of N-methyl-D-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg 2003, 97:494–505. table of contentsCrossRefPubMed Hemstapat K, Monteith GR, Smith D, Smith MT: Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of N-methyl-D-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg 2003, 97:494–505. table of contentsCrossRefPubMed
16.
go back to reference Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi C, Li B, Monahan PE, Chan DM, Ripsch MS, White FA: Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Molecular Pain 2007, 3:38.CrossRefPubMedPubMedCentral Bhangoo S, Ren D, Miller RJ, Henry KJ, Lineswala J, Hamdouchi C, Li B, Monahan PE, Chan DM, Ripsch MS, White FA: Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Molecular Pain 2007, 3:38.CrossRefPubMedPubMedCentral
17.
go back to reference Ma C, LaMotte RH: Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 2005, 113:106–112.CrossRefPubMed Ma C, LaMotte RH: Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 2005, 113:106–112.CrossRefPubMed
18.
go back to reference Cummins TR, Waxman SG: Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 1997, 17:3503–3514.PubMed Cummins TR, Waxman SG: Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 1997, 17:3503–3514.PubMed
19.
go back to reference Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S: Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 2010, 299:G723-G732.CrossRefPubMed Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S: Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 2010, 299:G723-G732.CrossRefPubMed
20.
go back to reference Chavez SA, Martinko AJ, Lau C, Pham MN, Cheng K, Bevan DE, Mollnes TE, Yin H: Development of beta-amino alcohol derivatives that inhibit Toll-like receptor 4 mediated inflammatory response as potential antiseptics. J Med Chem 2011, 54:4659–4669.CrossRefPubMedPubMedCentral Chavez SA, Martinko AJ, Lau C, Pham MN, Cheng K, Bevan DE, Mollnes TE, Yin H: Development of beta-amino alcohol derivatives that inhibit Toll-like receptor 4 mediated inflammatory response as potential antiseptics. J Med Chem 2011, 54:4659–4669.CrossRefPubMedPubMedCentral
21.
go back to reference Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, Reddy A, Somogyi AA, Hutchinson MR, Watkins LR, Yin H: Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 2012, Apr 17,109(16):6325–6330.CrossRefPubMedPubMedCentral Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, Reddy A, Somogyi AA, Hutchinson MR, Watkins LR, Yin H: Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 2012, Apr 17,109(16):6325–6330.CrossRefPubMedPubMedCentral
22.
go back to reference Smith MT, Watt JA, Cramond T: Morphine-3-glucuronide–a potent antagonist of morphine analgesia. Life Sci 1990, 47:579–585.CrossRefPubMed Smith MT, Watt JA, Cramond T: Morphine-3-glucuronide–a potent antagonist of morphine analgesia. Life Sci 1990, 47:579–585.CrossRefPubMed
23.
go back to reference Poltorak A, Merlin T, Nielsen PJ, Sandra O, Smirnova I, Schupp I, Boehm T, Galanos C, Freudenberg MA: A point mutation in the IL-12R beta 2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice. J Immunol 2001, 167:2106–2111.CrossRefPubMed Poltorak A, Merlin T, Nielsen PJ, Sandra O, Smirnova I, Schupp I, Boehm T, Galanos C, Freudenberg MA: A point mutation in the IL-12R beta 2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice. J Immunol 2001, 167:2106–2111.CrossRefPubMed
24.
go back to reference Roberson DP, Binshtok AM, Blasl F, Bean BP, Woolf CJ: Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia: a systematic study and review. Br J Pharmacol 2011, 164:48–58.CrossRefPubMedPubMedCentral Roberson DP, Binshtok AM, Blasl F, Bean BP, Woolf CJ: Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia: a systematic study and review. Br J Pharmacol 2011, 164:48–58.CrossRefPubMedPubMedCentral
25.
go back to reference Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579:1–14.CrossRefPubMed Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579:1–14.CrossRefPubMed
26.
go back to reference Tanga FY, Nutile-McMenemy N, DeLeo JA: The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005, 102:5856–5861.CrossRefPubMedPubMedCentral Tanga FY, Nutile-McMenemy N, DeLeo JA: The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005, 102:5856–5861.CrossRefPubMedPubMedCentral
27.
go back to reference Kanaan SA, Saade NE, Haddad JJ, Abdelnoor AM, Atweh SF, Jabbur SJ, Safieh-Garabedian B: Endotoxin-induced local inflammation and hyperalgesia in rats and mice: a new model for inflammatory pain. Pain 1996, 66:373–379.CrossRefPubMed Kanaan SA, Saade NE, Haddad JJ, Abdelnoor AM, Atweh SF, Jabbur SJ, Safieh-Garabedian B: Endotoxin-induced local inflammation and hyperalgesia in rats and mice: a new model for inflammatory pain. Pain 1996, 66:373–379.CrossRefPubMed
28.
go back to reference Maier SF, Wiertelak EP, Martin D, Watkins LR: Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin. Brain Res 1993, 623:321–324.CrossRefPubMed Maier SF, Wiertelak EP, Martin D, Watkins LR: Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin. Brain Res 1993, 623:321–324.CrossRefPubMed
29.
go back to reference Qin X, Hou L, Wang X: Lipopolysaccharide evoked peptide release by calcium-induced calcium release. Neuroreport 2004, 15:1003–1006.CrossRefPubMed Qin X, Hou L, Wang X: Lipopolysaccharide evoked peptide release by calcium-induced calcium release. Neuroreport 2004, 15:1003–1006.CrossRefPubMed
30.
go back to reference Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG: Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett 2005, 579:2166–2170.CrossRefPubMed Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG: Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett 2005, 579:2166–2170.CrossRefPubMed
31.
go back to reference Cummins TR, Howe JR, Waxman SG: Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 1998, 18:9607–9619.PubMed Cummins TR, Howe JR, Waxman SG: Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 1998, 18:9607–9619.PubMed
32.
go back to reference Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG: Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 2003, 551:741–750.CrossRefPubMedPubMedCentral Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG: Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 2003, 551:741–750.CrossRefPubMedPubMedCentral
33.
go back to reference Black JA, Liu S, Waxman SG: Sodium channel activity modulates multiple functions in microglia. Glia 2009, 57:1072–1081.CrossRefPubMed Black JA, Liu S, Waxman SG: Sodium channel activity modulates multiple functions in microglia. Glia 2009, 57:1072–1081.CrossRefPubMed
34.
go back to reference Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J: Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 2011, 6:e23083.CrossRefPubMedPubMedCentral Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J: Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 2011, 6:e23083.CrossRefPubMedPubMedCentral
35.
go back to reference Martinez V, Melgar S: Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain 2008, 12:934–944.CrossRefPubMed Martinez V, Melgar S: Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain 2008, 12:934–944.CrossRefPubMed
36.
go back to reference Herzog RI, Cummins TR, Waxman SG: Persistent TTX-resistant Na + current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 2001, 86:1351–1364.PubMed Herzog RI, Cummins TR, Waxman SG: Persistent TTX-resistant Na + current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 2001, 86:1351–1364.PubMed
37.
go back to reference Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN: GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 2003, 548:373–382.CrossRefPubMedPubMedCentral Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN: GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 2003, 548:373–382.CrossRefPubMedPubMedCentral
38.
go back to reference Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, Brenner GJ, Ji RR, Bean BP, Woolf CJ, Samad TA: Nociceptors are interleukin-1beta sensors. J Neurosci 2008, 28:14062–14073.CrossRefPubMedPubMedCentral Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, Brenner GJ, Ji RR, Bean BP, Woolf CJ, Samad TA: Nociceptors are interleukin-1beta sensors. J Neurosci 2008, 28:14062–14073.CrossRefPubMedPubMedCentral
39.
go back to reference Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, et al.: The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 2006, 26:12852–12860.CrossRefPubMed Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, et al.: The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 2006, 26:12852–12860.CrossRefPubMed
40.
go back to reference Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T: IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behavior and Immunity 2011, 25:1281–1289.CrossRef Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T: IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behavior and Immunity 2011, 25:1281–1289.CrossRef
41.
go back to reference Chiang C, Veckman V, Limmer K, David M: Phospholipase C gamma-2 and intracellular Calcium are required for LPS-induced Toll-Receptor 4 (TLR4) endocytosis and Interferon Regulatory Factor 3 (IRF3) activation. J Biol Chem 2012,287(6):3704–3709.CrossRefPubMed Chiang C, Veckman V, Limmer K, David M: Phospholipase C gamma-2 and intracellular Calcium are required for LPS-induced Toll-Receptor 4 (TLR4) endocytosis and Interferon Regulatory Factor 3 (IRF3) activation. J Biol Chem 2012,287(6):3704–3709.CrossRefPubMed
43.
go back to reference Hou L, Wang X: PKC and PKA, but not PKG mediate LPS-induced CGRP release and [Ca(2+)](i) elevation in DRG neurons of neonatal rats. J Neurosci Res 2001, 66:592–600.CrossRefPubMed Hou L, Wang X: PKC and PKA, but not PKG mediate LPS-induced CGRP release and [Ca(2+)](i) elevation in DRG neurons of neonatal rats. J Neurosci Res 2001, 66:592–600.CrossRefPubMed
44.
go back to reference Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ: Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 2009, 106:9075–9080.CrossRefPubMedPubMedCentral Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ: Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 2009, 106:9075–9080.CrossRefPubMedPubMedCentral
45.
go back to reference Shields SD, Cavanaugh DJ, Lee H, Anderson DJ, Basbaum AI: Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain 2010, 151:422–429.CrossRefPubMedPubMedCentral Shields SD, Cavanaugh DJ, Lee H, Anderson DJ, Basbaum AI: Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain 2010, 151:422–429.CrossRefPubMedPubMedCentral
46.
go back to reference Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI: Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 2009, 137:1148–1159.CrossRefPubMedPubMedCentral Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI: Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 2009, 137:1148–1159.CrossRefPubMedPubMedCentral
Metadata
Title
Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling
Authors
Michael R Due
Andrew D Piekarz
Natalie Wilson
Polina Feldman
Matthew S Ripsch
Sherry Chavez
Hang Yin
Rajesh Khanna
Fletcher A White
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-200

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue