Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Research

Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain

Authors: Anthony Lyons, Kevin J Murphy, Rachael Clarke, Marina A Lynch

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Background

Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified.

Methods

Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot.

Results

Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells.

Conclusions

We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lucin KM, Wyss-Coray T: Immune activation in brain aging and neurodegeneration: too much or too little?. Neuron. 2009, 64: 110-122. 10.1016/j.neuron.2009.08.039.PubMedCentralCrossRefPubMed Lucin KM, Wyss-Coray T: Immune activation in brain aging and neurodegeneration: too much or too little?. Neuron. 2009, 64: 110-122. 10.1016/j.neuron.2009.08.039.PubMedCentralCrossRefPubMed
2.
go back to reference Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA: IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem. 2007, 101: 771-781. 10.1111/j.1471-4159.2006.04370.x.CrossRefPubMed Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA: IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem. 2007, 101: 771-781. 10.1111/j.1471-4159.2006.04370.x.CrossRefPubMed
3.
go back to reference Clarke RM, Lyons A, O'Connell F, Deighan BF, Barry CE, Anyakoha NG, Nicolaou A, Lynch MA: A pivotal role for interleukin-4 in atorvastatin-associated neuroprotection in rat brain. J Biol Chem. 2008, 283: 1808-1817. 10.1074/jbc.M707442200.CrossRefPubMed Clarke RM, Lyons A, O'Connell F, Deighan BF, Barry CE, Anyakoha NG, Nicolaou A, Lynch MA: A pivotal role for interleukin-4 in atorvastatin-associated neuroprotection in rat brain. J Biol Chem. 2008, 283: 1808-1817. 10.1074/jbc.M707442200.CrossRefPubMed
4.
go back to reference Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T: Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol. 2005, 35: 83-90. 10.1016/j.ijpara.2004.10.020.CrossRefPubMed Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T: Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol. 2005, 35: 83-90. 10.1016/j.ijpara.2004.10.020.CrossRefPubMed
5.
go back to reference Borrego F, Robertson MJ, Ritz J, Pena J, Solana R: CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology. 1999, 97: 159-165. 10.1046/j.1365-2567.1999.00738.x.PubMedCentralCrossRefPubMed Borrego F, Robertson MJ, Ritz J, Pena J, Solana R: CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology. 1999, 97: 159-165. 10.1046/j.1365-2567.1999.00738.x.PubMedCentralCrossRefPubMed
6.
go back to reference Tanaka T, Porter CM, Horvath-Arcidiacono JA, Bloom ET: Lipophilic statins suppress cytotoxicity by freshly isolated natural killer cells through modulation of granule exocytosis. Int Immunol. 2007, 19: 163-173. 10.1093/intimm/dxl133.CrossRefPubMed Tanaka T, Porter CM, Horvath-Arcidiacono JA, Bloom ET: Lipophilic statins suppress cytotoxicity by freshly isolated natural killer cells through modulation of granule exocytosis. Int Immunol. 2007, 19: 163-173. 10.1093/intimm/dxl133.CrossRefPubMed
7.
go back to reference Clarke RM, O'Connell F, Lyons A, Lynch MA: The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo. Neuropharmacology. 2007, 52: 136-145. 10.1016/j.neuropharm.2006.07.031.CrossRefPubMed Clarke RM, O'Connell F, Lyons A, Lynch MA: The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo. Neuropharmacology. 2007, 52: 136-145. 10.1016/j.neuropharm.2006.07.031.CrossRefPubMed
8.
go back to reference Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS: The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002, 420: 78-84. 10.1038/nature01158.CrossRefPubMed Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS: The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002, 420: 78-84. 10.1038/nature01158.CrossRefPubMed
9.
go back to reference Maher FO, Clarke RM, Kelly A, Nally RE, Lynch MA: Interaction between interferon gamma and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J Neurochem. 2006, 96: 1560-1571. 10.1111/j.1471-4159.2006.03664.x.CrossRefPubMed Maher FO, Clarke RM, Kelly A, Nally RE, Lynch MA: Interaction between interferon gamma and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J Neurochem. 2006, 96: 1560-1571. 10.1111/j.1471-4159.2006.03664.x.CrossRefPubMed
10.
go back to reference Cowley TR, O'Sullivan J, Blau C, Deighan BF, Jones R, Kerskens C, Richardson JC, Virley D, Upton N, Lynch MA: Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiol Aging. Cowley TR, O'Sullivan J, Blau C, Deighan BF, Jones R, Kerskens C, Richardson JC, Virley D, Upton N, Lynch MA: Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiol Aging.
11.
go back to reference Downer EJ, Cowley TR, Lyons A, Mills KH, Berezin V, Bock E, Lynch MA: A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiol Aging. 31: 118-128. 10.1016/j.neurobiolaging.2008.03.017. Downer EJ, Cowley TR, Lyons A, Mills KH, Berezin V, Bock E, Lynch MA: A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiol Aging. 31: 118-128. 10.1016/j.neurobiolaging.2008.03.017.
12.
go back to reference Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA: A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation. J Neurochem. 2009, 109: 1516-1525. 10.1111/j.1471-4159.2009.06076.x.CrossRefPubMed Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA: A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation. J Neurochem. 2009, 109: 1516-1525. 10.1111/j.1471-4159.2009.06076.x.CrossRefPubMed
13.
go back to reference Benveniste EN, Nguyen VT, Wesemann DR: Molecular regulation of CD40 gene expression in macrophages and microglia. Brain Behav Immun. 2004, 18: 7-12. 10.1016/j.bbi.2003.09.001.CrossRefPubMed Benveniste EN, Nguyen VT, Wesemann DR: Molecular regulation of CD40 gene expression in macrophages and microglia. Brain Behav Immun. 2004, 18: 7-12. 10.1016/j.bbi.2003.09.001.CrossRefPubMed
14.
go back to reference Muller M, Carter S, Hofer MJ, Campbell IL: Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity--a tale of conflict and conundrum. Neuropathol Appl Neurobiol. 36: 368-387. 10.1111/j.1365-2990.2010.01089.x. Muller M, Carter S, Hofer MJ, Campbell IL: Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity--a tale of conflict and conundrum. Neuropathol Appl Neurobiol. 36: 368-387. 10.1111/j.1365-2990.2010.01089.x.
15.
go back to reference Nitta T, Ebato M, Sato K, Okumura K: Expression of tumour necrosis factor-alpha, -beta and interferon-gamma genes within human neuroglial tumour cells and brain specimens. Cytokine. 1994, 6: 171-180. 10.1016/1043-4666(94)90039-6.CrossRefPubMed Nitta T, Ebato M, Sato K, Okumura K: Expression of tumour necrosis factor-alpha, -beta and interferon-gamma genes within human neuroglial tumour cells and brain specimens. Cytokine. 1994, 6: 171-180. 10.1016/1043-4666(94)90039-6.CrossRefPubMed
16.
go back to reference Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, et al: Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999, 190: 1505-1516. 10.1084/jem.190.10.1505.PubMedCentralCrossRefPubMed Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, et al: Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999, 190: 1505-1516. 10.1084/jem.190.10.1505.PubMedCentralCrossRefPubMed
17.
go back to reference Lanier LL, Chang C, Phillips JH: Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 1994, 153: 2417-2428.PubMed Lanier LL, Chang C, Phillips JH: Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 1994, 153: 2417-2428.PubMed
18.
go back to reference Babcock AA, Toft-Hansen H, Owens T: Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol. 2008, 181: 6481-6490.CrossRefPubMed Babcock AA, Toft-Hansen H, Owens T: Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol. 2008, 181: 6481-6490.CrossRefPubMed
19.
go back to reference Bake S, Friedman JA, Sohrabji F: Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins. Microvasc Res. 2009, 78: 413-424. 10.1016/j.mvr.2009.06.009.PubMedCentralCrossRefPubMed Bake S, Friedman JA, Sohrabji F: Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins. Microvasc Res. 2009, 78: 413-424. 10.1016/j.mvr.2009.06.009.PubMedCentralCrossRefPubMed
20.
go back to reference Inngjerdingen M, Damaj B, Maghazachi AA: Expression and regulation of chemokine receptors in human natural killer cells. Blood. 2001, 97: 367-375. 10.1182/blood.V97.2.367.CrossRefPubMed Inngjerdingen M, Damaj B, Maghazachi AA: Expression and regulation of chemokine receptors in human natural killer cells. Blood. 2001, 97: 367-375. 10.1182/blood.V97.2.367.CrossRefPubMed
21.
go back to reference Pintaric M, Gerner W, Saalmuller A: Synergistic effects of IL-2, IL-12 and IL-18 on cytolytic activity, perforin expression and IFN-gamma production of porcine natural killer cells. Vet Immunol Immunopathol. 2008, 121: 68-82. 10.1016/j.vetimm.2007.08.009.CrossRefPubMed Pintaric M, Gerner W, Saalmuller A: Synergistic effects of IL-2, IL-12 and IL-18 on cytolytic activity, perforin expression and IFN-gamma production of porcine natural killer cells. Vet Immunol Immunopathol. 2008, 121: 68-82. 10.1016/j.vetimm.2007.08.009.CrossRefPubMed
22.
go back to reference Kalayci R, Kaya M, Elmas I, Arican N, Ahishali B, Uzun H, Bilgic B, Kucuk M, Kudat H: Effects of atorvastatin on blood-brain barrier permeability during L-NAME hypertension followed by angiotensin-II in rats. Brain Res. 2005, 1042: 184-193. 10.1016/j.brainres.2005.02.044.CrossRefPubMed Kalayci R, Kaya M, Elmas I, Arican N, Ahishali B, Uzun H, Bilgic B, Kucuk M, Kudat H: Effects of atorvastatin on blood-brain barrier permeability during L-NAME hypertension followed by angiotensin-II in rats. Brain Res. 2005, 1042: 184-193. 10.1016/j.brainres.2005.02.044.CrossRefPubMed
23.
go back to reference Marcoff L, Thompson PD: The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007, 49: 2231-2237. 10.1016/j.jacc.2007.02.049.CrossRefPubMed Marcoff L, Thompson PD: The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007, 49: 2231-2237. 10.1016/j.jacc.2007.02.049.CrossRefPubMed
24.
go back to reference Dickstein DL, Biron KE, Ujiie M, Pfeifer CG, Jeffries AR, Jefferies WA: Abeta peptide immunization restores blood-brain barrier integrity in Alzheimer disease. FASEB J. 2006, 20: 426-433. 10.1096/fj.05-3956com.CrossRefPubMed Dickstein DL, Biron KE, Ujiie M, Pfeifer CG, Jeffries AR, Jefferies WA: Abeta peptide immunization restores blood-brain barrier integrity in Alzheimer disease. FASEB J. 2006, 20: 426-433. 10.1096/fj.05-3956com.CrossRefPubMed
25.
go back to reference Paris D, Town T, Mori T, Parker TA, Humphrey J, Mullan M: Soluble beta-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway. Neurobiol Aging. 2000, 21: 183-197.CrossRefPubMed Paris D, Town T, Mori T, Parker TA, Humphrey J, Mullan M: Soluble beta-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway. Neurobiol Aging. 2000, 21: 183-197.CrossRefPubMed
26.
go back to reference Giri R, Shen Y, Stins M, Du Yan S, Schmidt AM, Stern D, Kim KS, Zlokovic B, Kalra VK: beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol. 2000, 279: C1772-1781.PubMed Giri R, Shen Y, Stins M, Du Yan S, Schmidt AM, Stern D, Kim KS, Zlokovic B, Kalra VK: beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol. 2000, 279: C1772-1781.PubMed
Metadata
Title
Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain
Authors
Anthony Lyons
Kevin J Murphy
Rachael Clarke
Marina A Lynch
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-27

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue