Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Research

Nogo receptor is involved in the adhesion of dendritic cells to myelin

Authors: Claire L McDonald, Karin Steinbach, Florian Kern, Rüdiger Schweigreiter, Roland Martin, Christine E Bandtlow, Markus Reindl

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Background

Nogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. In vitro, cells expressing NgR1/2 are inhibited from adhering to and spreading on a myelin substrate. Neuronal injury also results in the presence of dendritic cells (DCs) in the central nervous system, where they can come into contact with myelin debris. The exact mechanisms of interaction of immune cells with CNS myelin are, however, poorly understood.

Methods

Human DCs were differentiated from peripheral blood monocytes and mouse DCs were differentiated from wild type and NgR1/NgR2 double knockout bone marrow precursors. NgR1 and NgR2 expression were determined with quantitative real time PCR and immunoblot, and adhesion of cells to myelin was quantified.

Results

We demonstrate that human immature myeloid DCs express NgR1 and NgR2, which are then down-regulated upon maturation. Human mature DCs also adhere to a much higher extent to a myelin substrate than immature DCs. We observe the same effect when the cells are plated on Nogo-66-His (binding peptide for NgR1), but not on control proteins. Mature DCs taken from Ngr1/2 knockout mice adhere to a much higher extent to myelin compared to wild type mouse DCs. In addition, Ngr1/2 knockout had no effect on in vitro DC differentiation or phenotype.

Conclusions

These results indicate that a lack of NgR1/2 expression promotes the adhesion of DCs to myelin. This interaction could be important in neuroinflammatory disorders such as multiple sclerosis in which peripheral immune cells come into contact with myelin debris.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME: Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000, 403: 434-439. 10.1038/35000219.CrossRefPubMed Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME: Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000, 403: 434-439. 10.1038/35000219.CrossRefPubMed
2.
go back to reference Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS: Inhibitor of neurite outgrowth in humans. Nature. 2000, 403: 383-384. 10.1038/35000287.CrossRefPubMed Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS: Inhibitor of neurite outgrowth in humans. Nature. 2000, 403: 383-384. 10.1038/35000287.CrossRefPubMed
3.
go back to reference McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994, 13: 805-811. 10.1016/0896-6273(94)90247-X.CrossRefPubMed McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994, 13: 805-811. 10.1016/0896-6273(94)90247-X.CrossRefPubMed
4.
go back to reference Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994, 13: 757-767. 10.1016/0896-6273(94)90042-6.CrossRefPubMed Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994, 13: 757-767. 10.1016/0896-6273(94)90042-6.CrossRefPubMed
5.
go back to reference Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z: Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002, 417: 941-944. 10.1038/nature00867.CrossRefPubMed Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z: Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002, 417: 941-944. 10.1038/nature00867.CrossRefPubMed
6.
go back to reference Fournier AE, GrandPre T, Strittmatter SM: Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature. 2001, 409: 341-346. 10.1038/35053072.CrossRefPubMed Fournier AE, GrandPre T, Strittmatter SM: Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature. 2001, 409: 341-346. 10.1038/35053072.CrossRefPubMed
7.
go back to reference Wang KC, Kim JA, Sivasankaran R, Segal R, He Z: P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002, 420: 74-78. 10.1038/nature01176.CrossRefPubMed Wang KC, Kim JA, Sivasankaran R, Segal R, He Z: P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002, 420: 74-78. 10.1038/nature01176.CrossRefPubMed
8.
go back to reference Liu BP, Fournier A, GrandPre T, Strittmatter SM: Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 2002, 297: 1190-1193. 10.1126/science.1073031.CrossRefPubMed Liu BP, Fournier A, GrandPre T, Strittmatter SM: Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 2002, 297: 1190-1193. 10.1126/science.1073031.CrossRefPubMed
9.
go back to reference Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ: The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci. 2005, 25: 808-822. 10.1523/JNEUROSCI.4464-04.2005.CrossRefPubMed Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ: The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci. 2005, 25: 808-822. 10.1523/JNEUROSCI.4464-04.2005.CrossRefPubMed
10.
go back to reference Worter V, Schweigreiter R, Kinzel B, Mueller M, Barske C, Bock G, Frentzel S, Bandtlow CE: Inhibitory activity of myelin-associated glycoprotein on sensory neurons is largely independent of NgR1 and NgR2 and resides within Ig-Like domains 4 and 5. PLoS One. 2009, 4: e5218-10.1371/journal.pone.0005218.PubMedCentralCrossRefPubMed Worter V, Schweigreiter R, Kinzel B, Mueller M, Barske C, Bock G, Frentzel S, Bandtlow CE: Inhibitory activity of myelin-associated glycoprotein on sensory neurons is largely independent of NgR1 and NgR2 and resides within Ig-Like domains 4 and 5. PLoS One. 2009, 4: e5218-10.1371/journal.pone.0005218.PubMedCentralCrossRefPubMed
11.
go back to reference Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z: A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 2005, 45: 345-351. 10.1016/j.neuron.2004.12.040.CrossRefPubMed Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z: A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 2005, 45: 345-351. 10.1016/j.neuron.2004.12.040.CrossRefPubMed
12.
go back to reference Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, et al: LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004, 7: 221-228. 10.1038/nn1188.CrossRefPubMed Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, et al: LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004, 7: 221-228. 10.1038/nn1188.CrossRefPubMed
13.
go back to reference Pool M, Niino M, Rambaldi I, Robson K, Bar-Or A, Fournier AE: Myelin regulates immune cell adhesion and motility. Exp Neurol. 2009, 217: 371-377. 10.1016/j.expneurol.2009.03.014.CrossRefPubMed Pool M, Niino M, Rambaldi I, Robson K, Bar-Or A, Fournier AE: Myelin regulates immune cell adhesion and motility. Exp Neurol. 2009, 217: 371-377. 10.1016/j.expneurol.2009.03.014.CrossRefPubMed
14.
go back to reference Barrette B, Vallieres N, Dube M, Lacroix S: Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Mol Cell Neurosci. 2007, 34: 519-538. 10.1016/j.mcn.2006.12.004.CrossRefPubMed Barrette B, Vallieres N, Dube M, Lacroix S: Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Mol Cell Neurosci. 2007, 34: 519-538. 10.1016/j.mcn.2006.12.004.CrossRefPubMed
15.
go back to reference Yamashita T, Tohyama M: The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci. 2003, 6: 461-467.PubMed Yamashita T, Tohyama M: The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci. 2003, 6: 461-467.PubMed
16.
go back to reference Schwab ME, Caroni P: Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988, 8: 2381-2393.PubMed Schwab ME, Caroni P: Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988, 8: 2381-2393.PubMed
17.
go back to reference Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, Tang BL, Xiao ZC: Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem. 2004, 90: 1156-1162. 10.1111/j.1471-4159.2004.02573.x.CrossRefPubMed Liao H, Duka T, Teng FY, Sun L, Bu WY, Ahmed S, Tang BL, Xiao ZC: Nogo-66 and myelin-associated glycoprotein (MAG) inhibit the adhesion and migration of Nogo-66 receptor expressing human glioma cells. J Neurochem. 2004, 90: 1156-1162. 10.1111/j.1471-4159.2004.02573.x.CrossRefPubMed
18.
go back to reference Fry EJ, Ho C, David S: A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron. 2007, 53: 649-662. 10.1016/j.neuron.2007.02.009.CrossRefPubMed Fry EJ, Ho C, David S: A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron. 2007, 53: 649-662. 10.1016/j.neuron.2007.02.009.CrossRefPubMed
19.
go back to reference Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991, 9: 271-296. 10.1146/annurev.iy.09.040191.001415.CrossRefPubMed Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991, 9: 271-296. 10.1146/annurev.iy.09.040191.001415.CrossRefPubMed
20.
go back to reference Matyszak MK, Perry VH: The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience. 1996, 74: 599-608. 10.1016/0306-4522(96)00160-1.CrossRefPubMed Matyszak MK, Perry VH: The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience. 1996, 74: 599-608. 10.1016/0306-4522(96)00160-1.CrossRefPubMed
21.
go back to reference Pashenkov M, Link H: Dendritic cells and immune responses in the central nervous system. Trends Immunol. 2002, 23: 69-70. 10.1016/S1471-4906(01)02114-7. author reply 70CrossRefPubMed Pashenkov M, Link H: Dendritic cells and immune responses in the central nervous system. Trends Immunol. 2002, 23: 69-70. 10.1016/S1471-4906(01)02114-7. author reply 70CrossRefPubMed
22.
go back to reference Newman TA, Galea I, van Rooijen N, Perry VH: Blood-derived dendritic cells in an acute brain injury. J Neuroimmunol. 2005, 166: 167-172. 10.1016/j.jneuroim.2005.04.026.CrossRefPubMed Newman TA, Galea I, van Rooijen N, Perry VH: Blood-derived dendritic cells in an acute brain injury. J Neuroimmunol. 2005, 166: 167-172. 10.1016/j.jneuroim.2005.04.026.CrossRefPubMed
23.
go back to reference Zozulya AL, Clarkson BD, Ortler S, Fabry Z, Wiendl H: The role of dendritic cells in CNS autoimmunity. J Mol Med. 2010, 88: 535-544. 10.1007/s00109-010-0607-4.PubMedCentralCrossRefPubMed Zozulya AL, Clarkson BD, Ortler S, Fabry Z, Wiendl H: The role of dendritic cells in CNS autoimmunity. J Mol Med. 2010, 88: 535-544. 10.1007/s00109-010-0607-4.PubMedCentralCrossRefPubMed
24.
go back to reference Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F: Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol. 2006, 65: 124-141. 10.1097/01.jnen.0000199572.96472.1c.PubMed Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F: Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol. 2006, 65: 124-141. 10.1097/01.jnen.0000199572.96472.1c.PubMed
25.
go back to reference Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996, 196: 121-135. 10.1016/0022-1759(96)00079-8.CrossRefPubMed Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996, 196: 121-135. 10.1016/0022-1759(96)00079-8.CrossRefPubMed
26.
go back to reference Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods. 1996, 196: 137-151. 10.1016/0022-1759(96)00078-6.CrossRefPubMed Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods. 1996, 196: 137-151. 10.1016/0022-1759(96)00078-6.CrossRefPubMed
27.
go back to reference Zheng B, Atwal J, Ho C, Case L, He XL, Garcia KC, Steward O, Tessier-Lavigne M: Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA. 2005, 102: 1205-1210. 10.1073/pnas.0409026102.PubMedCentralCrossRefPubMed Zheng B, Atwal J, Ho C, Case L, He XL, Garcia KC, Steward O, Tessier-Lavigne M: Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA. 2005, 102: 1205-1210. 10.1073/pnas.0409026102.PubMedCentralCrossRefPubMed
28.
go back to reference Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G: An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999, 223: 77-92. 10.1016/S0022-1759(98)00204-X.CrossRefPubMed Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G: An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999, 223: 77-92. 10.1016/S0022-1759(98)00204-X.CrossRefPubMed
29.
go back to reference Norton WT, Poduslo SE: Myelination in rat brain: method of myelin isolation. J Neurochem. 1973, 21: 749-757. 10.1111/j.1471-4159.1973.tb07519.x.CrossRefPubMed Norton WT, Poduslo SE: Myelination in rat brain: method of myelin isolation. J Neurochem. 1973, 21: 749-757. 10.1111/j.1471-4159.1973.tb07519.x.CrossRefPubMed
30.
go back to reference Eylar EH, Hashim GA: The isolation and properties of large basic peptides from bovine spinal cord. J Neurochem. 1974, 23: 973-979. 10.1111/j.1471-4159.1974.tb10749.x.CrossRefPubMed Eylar EH, Hashim GA: The isolation and properties of large basic peptides from bovine spinal cord. J Neurochem. 1974, 23: 973-979. 10.1111/j.1471-4159.1974.tb10749.x.CrossRefPubMed
31.
go back to reference Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE: Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci. 2002, 22: 10368-10376.PubMed Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE: Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci. 2002, 22: 10368-10376.PubMed
32.
go back to reference Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11: 36-42. Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International. 2004, 11: 36-42.
33.
go back to reference Kueng W, Silber E, Eppenberger U: Quantification of cells cultured on 96-well plates. Anal Biochem. 1989, 182: 16-19. 10.1016/0003-2697(89)90710-0.CrossRefPubMed Kueng W, Silber E, Eppenberger U: Quantification of cells cultured on 96-well plates. Anal Biochem. 1989, 182: 16-19. 10.1016/0003-2697(89)90710-0.CrossRefPubMed
34.
go back to reference Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al: TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003, 34: 374-378.PubMed Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al: TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003, 34: 374-378.PubMed
36.
go back to reference Mi S: Troy/Taj and its role in CNS axon regeneration. Cytokine Growth Factor Rev. 2008, 19: 245-251. 10.1016/j.cytogfr.2008.04.007.CrossRefPubMed Mi S: Troy/Taj and its role in CNS axon regeneration. Cytokine Growth Factor Rev. 2008, 19: 245-251. 10.1016/j.cytogfr.2008.04.007.CrossRefPubMed
37.
go back to reference Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah D, McCoy JM, et al: TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 2005, 45: 353-359. 10.1016/j.neuron.2004.12.050.CrossRefPubMed Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah D, McCoy JM, et al: TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 2005, 45: 353-359. 10.1016/j.neuron.2004.12.050.CrossRefPubMed
38.
go back to reference Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327: 656-661. 10.1126/science.1178331.PubMedCentralCrossRefPubMed Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327: 656-661. 10.1126/science.1178331.PubMedCentralCrossRefPubMed
39.
go back to reference Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, et al: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008, 9: R17-10.1186/gb-2008-9-1-r17.PubMedCentralCrossRefPubMed Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, et al: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008, 9: R17-10.1186/gb-2008-9-1-r17.PubMedCentralCrossRefPubMed
40.
go back to reference Mestas J, Hughes CC: Of mice and not men: differences between mouse and human immunology. J Immunol. 2004, 172: 2731-2738.CrossRefPubMed Mestas J, Hughes CC: Of mice and not men: differences between mouse and human immunology. J Immunol. 2004, 172: 2731-2738.CrossRefPubMed
41.
go back to reference Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M: Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev. 2010, 234: 177-198. 10.1111/j.0105-2896.2009.00868.x.CrossRefPubMed Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M: Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev. 2010, 234: 177-198. 10.1111/j.0105-2896.2009.00868.x.CrossRefPubMed
42.
go back to reference Shortman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002, 2: 151-161. 10.1038/nri746.CrossRefPubMed Shortman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002, 2: 151-161. 10.1038/nri746.CrossRefPubMed
43.
go back to reference Steinbach K, McDonald CL, Reindl M, Bandtlow C, Martin R: The roles of Nogo receptor-mediated interactions in autoimmune inflammation in experimental autoimmune encephalomyelitis. 10th International Congress of Neuroimmunology 26th October, 2010; Barcelona. 2010, Elsevier/North-Holland, 1-219. Steinbach K, McDonald CL, Reindl M, Bandtlow C, Martin R: The roles of Nogo receptor-mediated interactions in autoimmune inflammation in experimental autoimmune encephalomyelitis. 10th International Congress of Neuroimmunology 26th October, 2010; Barcelona. 2010, Elsevier/North-Holland, 1-219.
44.
go back to reference Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252. 10.1038/32588.CrossRefPubMed Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252. 10.1038/32588.CrossRefPubMed
45.
go back to reference Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Forster R, Alon R, Fraemohs L, Dreck K, Weber C, et al: Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood. 2009, 113: 5801-5810. 10.1182/blood-2008-08-176123.CrossRefPubMed Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Forster R, Alon R, Fraemohs L, Dreck K, Weber C, et al: Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood. 2009, 113: 5801-5810. 10.1182/blood-2008-08-176123.CrossRefPubMed
46.
go back to reference Swetman CA, Leverrier Y, Garg R, Gan CH, Ridley AJ, Katz DR, Chain BM: Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur J Immunol. 2002, 32: 2074-2083. 10.1002/1521-4141(200207)32:7<2074::AID-IMMU2074>3.0.CO;2-S.CrossRefPubMed Swetman CA, Leverrier Y, Garg R, Gan CH, Ridley AJ, Katz DR, Chain BM: Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur J Immunol. 2002, 32: 2074-2083. 10.1002/1521-4141(200207)32:7<2074::AID-IMMU2074>3.0.CO;2-S.CrossRefPubMed
47.
go back to reference Zhang L, Zheng S, Wu H, Wu Y, Liu S, Fan M, Zhang J: Identification of BLyS (B lymphocyte stimulator), a non-myelin-associated protein, as a functional ligand for Nogo-66 receptor. J Neurosci. 2009, 29: 6348-6352. 10.1523/JNEUROSCI.5040-08.2009.CrossRefPubMed Zhang L, Zheng S, Wu H, Wu Y, Liu S, Fan M, Zhang J: Identification of BLyS (B lymphocyte stimulator), a non-myelin-associated protein, as a functional ligand for Nogo-66 receptor. J Neurosci. 2009, 29: 6348-6352. 10.1523/JNEUROSCI.5040-08.2009.CrossRefPubMed
48.
go back to reference Thomas R, Favell K, Morante-Redolat J, Pool M, Kent C, Wright M, Daignault K, Ferraro GB, Montcalm S, Durocher Y, et al: LGI1 is a Nogo receptor 1 ligand that antagonizes myelin-based growth inhibition. J Neurosci. 2010, 30: 6607-6612. 10.1523/JNEUROSCI.5147-09.2010.CrossRefPubMed Thomas R, Favell K, Morante-Redolat J, Pool M, Kent C, Wright M, Daignault K, Ferraro GB, Montcalm S, Durocher Y, et al: LGI1 is a Nogo receptor 1 ligand that antagonizes myelin-based growth inhibition. J Neurosci. 2010, 30: 6607-6612. 10.1523/JNEUROSCI.5147-09.2010.CrossRefPubMed
50.
go back to reference Satoh J, Onoue H, Arima K, Yamamura T: Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol. 2005, 64: 129-138.CrossRefPubMed Satoh J, Onoue H, Arima K, Yamamura T: Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol. 2005, 64: 129-138.CrossRefPubMed
51.
go back to reference Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H: TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2007, 33: 99-107.CrossRefPubMed Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H: TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2007, 33: 99-107.CrossRefPubMed
Metadata
Title
Nogo receptor is involved in the adhesion of dendritic cells to myelin
Authors
Claire L McDonald
Karin Steinbach
Florian Kern
Rüdiger Schweigreiter
Roland Martin
Christine E Bandtlow
Markus Reindl
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-113

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue