Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2007

Open Access 01-12-2007 | Research

A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

Authors: Lenka Munoz, Hantamalala Ralay Ranaivo, Saktimayee M Roy, Wenhui Hu, Jeffrey M Craft, Laurie K McNamara, Laura Wing Chico, Linda J Van Eldik, D Martin Watterson

Published in: Journal of Neuroinflammation | Issue 1/2007

Login to get access

Abstract

Background

An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD). This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ) and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes.

Methods

A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model.

Results

A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM) was developed. Oral administration of the compound at a low dose (2.5 mg/kg) resulted in attenuation of excessive proinflammatory cytokine production in the hippocampus back towards normal in the animal model. Animals with attenuated cytokine production had reductions in synaptic dysfunction and hippocampus-dependent behavioral deficits.

Conclusion

The p38α MAPK pathway is quantitatively important in the Aβ-induced production of proinflammatory cytokines in hippocampus, and brain p38α MAPK is a viable molecular target for future development of potential disease-modifying therapeutics in AD and related neurodegenerative disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Craft JM, Watterson DM, Van Eldik LJ: Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets. 2005, 9: 887-900. 10.1517/14728222.9.5.887.CrossRefPubMed Craft JM, Watterson DM, Van Eldik LJ: Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets. 2005, 9: 887-900. 10.1517/14728222.9.5.887.CrossRefPubMed
2.
go back to reference Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE: Glial-neuronal interactions in Alzheimer's disease: the potential role of a "cytokine cycle" in disease progression. Brain Pathol. 1998, 8: 65-72.CrossRefPubMed Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE: Glial-neuronal interactions in Alzheimer's disease: the potential role of a "cytokine cycle" in disease progression. Brain Pathol. 1998, 8: 65-72.CrossRefPubMed
3.
go back to reference Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002, 202: 13-23. 10.1016/S0022-510X(02)00207-1.CrossRefPubMed Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002, 202: 13-23. 10.1016/S0022-510X(02)00207-1.CrossRefPubMed
4.
go back to reference Moisse K, Strong MJ: Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006, 1762: 1083-1093.CrossRefPubMed Moisse K, Strong MJ: Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006, 1762: 1083-1093.CrossRefPubMed
5.
go back to reference Mrak RE, Griffin WST: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005, 26: 349-354. 10.1016/j.neurobiolaging.2004.05.010.CrossRefPubMed Mrak RE, Griffin WST: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005, 26: 349-354. 10.1016/j.neurobiolaging.2004.05.010.CrossRefPubMed
6.
go back to reference Nagatsu T, Sawada M: Inflammatory process in Parkinson's disease: role for cytokines. Pharm Des. 2005, 11: 999-1016. Nagatsu T, Sawada M: Inflammatory process in Parkinson's disease: role for cytokines. Pharm Des. 2005, 11: 999-1016.
7.
go back to reference Orr CF, Rowe DB, Halliday GM: An inflammatory review of Parkinson's disease. Prog Neurobiol. 2002, 68: 325-340. 10.1016/S0301-0082(02)00127-2.CrossRefPubMed Orr CF, Rowe DB, Halliday GM: An inflammatory review of Parkinson's disease. Prog Neurobiol. 2002, 68: 325-340. 10.1016/S0301-0082(02)00127-2.CrossRefPubMed
8.
go back to reference Ringheim GE, Conant K: Neurodegenerative disease and the neuroimmune axis (Alzheimer's and Parkinson's disease, and viral infections). J Neuroimmunol. 2004, 147: 43-49. 10.1016/j.jneuroim.2003.10.013.CrossRefPubMed Ringheim GE, Conant K: Neurodegenerative disease and the neuroimmune axis (Alzheimer's and Parkinson's disease, and viral infections). J Neuroimmunol. 2004, 147: 43-49. 10.1016/j.jneuroim.2003.10.013.CrossRefPubMed
9.
go back to reference Rothwell NJ, Luheshi GN: Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000, 23: 618-625. 10.1016/S0166-2236(00)01661-1.CrossRefPubMed Rothwell NJ, Luheshi GN: Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000, 23: 618-625. 10.1016/S0166-2236(00)01661-1.CrossRefPubMed
10.
go back to reference Sargsyan SA, Monk PN, Shaw PJ: Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia. 2005, 51: 241-253. 10.1002/glia.20210.CrossRefPubMed Sargsyan SA, Monk PN, Shaw PJ: Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia. 2005, 51: 241-253. 10.1002/glia.20210.CrossRefPubMed
11.
go back to reference Craft JM, Watterson DM, Van Eldik LJ: Human amyloid β-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006, 53: 484-490. 10.1002/glia.20306.CrossRefPubMed Craft JM, Watterson DM, Van Eldik LJ: Human amyloid β-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006, 53: 484-490. 10.1002/glia.20306.CrossRefPubMed
12.
go back to reference Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA. 1989, 86: 7611-7615. 10.1073/pnas.86.19.7611.PubMedCentralCrossRefPubMed Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA. 1989, 86: 7611-7615. 10.1073/pnas.86.19.7611.PubMedCentralCrossRefPubMed
13.
go back to reference Craft JM, Watterson DM, Marks A, Van Eldik LJ: Enhanced susceptibility of S100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human β-amyloid. Glia. 2005, 51: 209-216. 10.1002/glia.20194.CrossRefPubMed Craft JM, Watterson DM, Marks A, Van Eldik LJ: Enhanced susceptibility of S100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human β-amyloid. Glia. 2005, 51: 209-216. 10.1002/glia.20194.CrossRefPubMed
14.
go back to reference Craft JM, Watterson DM, Hirsch E, Van Eldik LJ: Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human beta-amyloid. J Neuroinflammation. 2005, 2: 15-23. 10.1186/1742-2094-2-15.PubMedCentralCrossRefPubMed Craft JM, Watterson DM, Hirsch E, Van Eldik LJ: Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human beta-amyloid. J Neuroinflammation. 2005, 2: 15-23. 10.1186/1742-2094-2-15.PubMedCentralCrossRefPubMed
15.
go back to reference Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST: Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci. 2000, 20: 149-155.PubMed Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST: Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci. 2000, 20: 149-155.PubMed
16.
go back to reference Griffin WST, Liu L, Li Y, Mrak RE, Barger SW: Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation. 2006, 3: 5-13. 10.1186/1742-2094-3-5.PubMedCentralCrossRefPubMed Griffin WST, Liu L, Li Y, Mrak RE, Barger SW: Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation. 2006, 3: 5-13. 10.1186/1742-2094-3-5.PubMedCentralCrossRefPubMed
17.
go back to reference Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WST: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging. 1996, 17: 761-766. 10.1016/0197-4580(96)00104-2.PubMedCentralCrossRefPubMed Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WST: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging. 1996, 17: 761-766. 10.1016/0197-4580(96)00104-2.PubMedCentralCrossRefPubMed
18.
go back to reference Sheng JG, Zhu SG, Jones RA, Griffin WST, Mrak RE: Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol. 2000, 163: 388-391. 10.1006/exnr.2000.7393.CrossRefPubMed Sheng JG, Zhu SG, Jones RA, Griffin WST, Mrak RE: Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol. 2000, 163: 388-391. 10.1006/exnr.2000.7393.CrossRefPubMed
19.
go back to reference Sheng JG, Jones RA, Zhou XQ, McGinness JM, Van Eldik LJ, Mrak RE, Griffin WS: Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochem Int. 2001, 39: 341-348. 10.1016/S0197-0186(01)00041-9.PubMedCentralCrossRefPubMed Sheng JG, Jones RA, Zhou XQ, McGinness JM, Van Eldik LJ, Mrak RE, Griffin WS: Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochem Int. 2001, 39: 341-348. 10.1016/S0197-0186(01)00041-9.PubMedCentralCrossRefPubMed
20.
go back to reference Craft JM, Watterson DM, Frautschy SA, Van Eldik LJ: Aminopyridazines inhibit β-amyloid induced glial activation and neuronal damage in vivo. Neurobiol Aging. 2004, 25: 1283-1292. 10.1016/j.neurobiolaging.2004.01.006.CrossRefPubMed Craft JM, Watterson DM, Frautschy SA, Van Eldik LJ: Aminopyridazines inhibit β-amyloid induced glial activation and neuronal damage in vivo. Neurobiol Aging. 2004, 25: 1283-1292. 10.1016/j.neurobiolaging.2004.01.006.CrossRefPubMed
21.
go back to reference Craft JM, Van Eldik LJ, Zasadzki M, Hu W, Watterson DM: Aminopyridazines attenuate hippocampus dependent behavioral deficits induced by human Aβ in a murine model of neuroinflammation. J Mol Neurosci. 2004, 24: 115-122. 10.1385/JMN:24:1:115.CrossRefPubMed Craft JM, Van Eldik LJ, Zasadzki M, Hu W, Watterson DM: Aminopyridazines attenuate hippocampus dependent behavioral deficits induced by human Aβ in a murine model of neuroinflammation. J Mol Neurosci. 2004, 24: 115-122. 10.1385/JMN:24:1:115.CrossRefPubMed
22.
go back to reference Hu W, Ralay Ranaivo H, Roy SM, Behanna HA, Wing LK, Munoz L, Guo L, Van Eldik LJ, Watterson DM: Development of a novel therapeutic suppressor of brain proinflammatory cytokine up-regulation that attenuates synaptic dysfunction and behavioral deficits. Bioorg Med Chem Lett. 2007, 17: 414-418. 10.1016/j.bmcl.2006.10.028.PubMedCentralCrossRefPubMed Hu W, Ralay Ranaivo H, Roy SM, Behanna HA, Wing LK, Munoz L, Guo L, Van Eldik LJ, Watterson DM: Development of a novel therapeutic suppressor of brain proinflammatory cytokine up-regulation that attenuates synaptic dysfunction and behavioral deficits. Bioorg Med Chem Lett. 2007, 17: 414-418. 10.1016/j.bmcl.2006.10.028.PubMedCentralCrossRefPubMed
23.
go back to reference Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, Watterson DM: Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci. 2006, 26: 662-670. 10.1523/JNEUROSCI.4652-05.2006.CrossRefPubMed Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, Watterson DM: Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci. 2006, 26: 662-670. 10.1523/JNEUROSCI.4652-05.2006.CrossRefPubMed
24.
go back to reference Braddock M, Quinn A: Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov. 2004, 3: 330-339. 10.1038/nrd1342.CrossRefPubMed Braddock M, Quinn A: Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov. 2004, 3: 330-339. 10.1038/nrd1342.CrossRefPubMed
25.
go back to reference Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL: Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov. 2003, 2: 736-746. 10.1038/nrd1175.CrossRefPubMed Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL: Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov. 2003, 2: 736-746. 10.1038/nrd1175.CrossRefPubMed
26.
go back to reference Tobinick E, Gross H, Weinberger A, Cohen H: TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006, 8: 25-PubMedCentralPubMed Tobinick E, Gross H, Weinberger A, Cohen H: TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006, 8: 25-PubMedCentralPubMed
27.
go back to reference Rhen T, Cidlowski JA: Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005, 353: 1711-1723. 10.1056/NEJMra050541.CrossRefPubMed Rhen T, Cidlowski JA: Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005, 353: 1711-1723. 10.1056/NEJMra050541.CrossRefPubMed
28.
go back to reference Schacke H, Docke WD, Asadullah K: Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002, 96: 23-43. 10.1016/S0163-7258(02)00297-8.CrossRefPubMed Schacke H, Docke WD, Asadullah K: Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002, 96: 23-43. 10.1016/S0163-7258(02)00297-8.CrossRefPubMed
29.
go back to reference Wing LK, Behanna HA, Van Eldik LJ, Watterson DM, Ralay Ranaivo H: De novo and molecular target-independent discovery of orally bioavailable lead compounds for neurological disorders. Curr Alzheimer Res. 2006, 3: 205-214. 10.2174/156720506777632844.CrossRefPubMed Wing LK, Behanna HA, Van Eldik LJ, Watterson DM, Ralay Ranaivo H: De novo and molecular target-independent discovery of orally bioavailable lead compounds for neurological disorders. Curr Alzheimer Res. 2006, 3: 205-214. 10.2174/156720506777632844.CrossRefPubMed
30.
go back to reference Somera-Molena KC, Robin B, Somera CA, Anderson C, Koh S, Behanna HA, Van Eldik LJ, Watterson DM, Wainwright MS: Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of pro-inflammatory cytokine upregulation. Epilepsia. 2007, online May 23, 2007. doi:10.1111/j.1528-1167.2007.01135.x Somera-Molena KC, Robin B, Somera CA, Anderson C, Koh S, Behanna HA, Van Eldik LJ, Watterson DM, Wainwright MS: Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of pro-inflammatory cytokine upregulation. Epilepsia. 2007, online May 23, 2007. doi:10.1111/j.1528-1167.2007.01135.x
31.
go back to reference Sams-Dodd F: Drug discovery: selecting the optimal approach. Drug Discov Today. 2006, 11: 465-472. 10.1016/j.drudis.2006.03.015.CrossRefPubMed Sams-Dodd F: Drug discovery: selecting the optimal approach. Drug Discov Today. 2006, 11: 465-472. 10.1016/j.drudis.2006.03.015.CrossRefPubMed
32.
go back to reference Sams-Dodd F: Research and market strategy: how choice of drug discovery approach can affect market position. Drug Discov Today. 2007, 12: 314-318. 10.1016/j.drudis.2007.02.014.CrossRefPubMed Sams-Dodd F: Research and market strategy: how choice of drug discovery approach can affect market position. Drug Discov Today. 2007, 12: 314-318. 10.1016/j.drudis.2007.02.014.CrossRefPubMed
33.
go back to reference Adams JL, Badger AM, Kumar S, Lee JC: p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem. 2001, 38: 1-60.CrossRefPubMed Adams JL, Badger AM, Kumar S, Lee JC: p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem. 2001, 38: 1-60.CrossRefPubMed
34.
go back to reference Kaminska B: MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005, 1754: 253-262.CrossRefPubMed Kaminska B: MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005, 1754: 253-262.CrossRefPubMed
35.
go back to reference Kumar S, Boehm J, Lee JC: p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003, 2: 717-726. 10.1038/nrd1177.CrossRefPubMed Kumar S, Boehm J, Lee JC: p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003, 2: 717-726. 10.1038/nrd1177.CrossRefPubMed
36.
go back to reference Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001, 81: 807-869.PubMed Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001, 81: 807-869.PubMed
37.
go back to reference Saklatvala J: The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol. 2004, 4: 372-377. 10.1016/j.coph.2004.03.009.CrossRefPubMed Saklatvala J: The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol. 2004, 4: 372-377. 10.1016/j.coph.2004.03.009.CrossRefPubMed
38.
go back to reference Schieven GL: The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005, 5: 921-928. 10.2174/1568026054985902.CrossRefPubMed Schieven GL: The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005, 5: 921-928. 10.2174/1568026054985902.CrossRefPubMed
39.
go back to reference Dalrymple SA: p38 mitogen activated protein kinase as a therapeutic target for Alzheimer's disease. J Mol Neurosci. 2002, 19: 295-299. 10.1385/JMN:19:3:295.CrossRefPubMed Dalrymple SA: p38 mitogen activated protein kinase as a therapeutic target for Alzheimer's disease. J Mol Neurosci. 2002, 19: 295-299. 10.1385/JMN:19:3:295.CrossRefPubMed
40.
go back to reference Johnson GV, Bailey CD: The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp Neurol. 2003, 183: 263-268. 10.1016/S0014-4886(03)00268-1.CrossRefPubMed Johnson GV, Bailey CD: The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp Neurol. 2003, 183: 263-268. 10.1016/S0014-4886(03)00268-1.CrossRefPubMed
41.
go back to reference Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J: Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr Alzheimer Res. 2005, 2: 3-18. 10.2174/1567205052772713.CrossRefPubMed Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J: Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr Alzheimer Res. 2005, 2: 3-18. 10.2174/1567205052772713.CrossRefPubMed
42.
go back to reference Hensley K, Floyd RA, Zheng NY, Nael R, Robinson KA, Nguyen X, Pye QN, Stewart CA, Geddes J, Markesbery WR, et al: p38 kinase is activated in the Alzheimer's disease brain. J Neurochem. 1999, 72: 2053-2058. 10.1046/j.1471-4159.1999.0722053.x.CrossRefPubMed Hensley K, Floyd RA, Zheng NY, Nael R, Robinson KA, Nguyen X, Pye QN, Stewart CA, Geddes J, Markesbery WR, et al: p38 kinase is activated in the Alzheimer's disease brain. J Neurochem. 1999, 72: 2053-2058. 10.1046/j.1471-4159.1999.0722053.x.CrossRefPubMed
43.
go back to reference Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF: Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. J Alzheimers Dis. 2001, 3: 41-48.PubMed Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF: Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. J Alzheimers Dis. 2001, 3: 41-48.PubMed
44.
go back to reference Sun A, Liu M, Nguyen XV, Bing G: P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol. 2003, 183: 394-405. 10.1016/S0014-4886(03)00180-8.CrossRefPubMed Sun A, Liu M, Nguyen XV, Bing G: P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol. 2003, 183: 394-405. 10.1016/S0014-4886(03)00180-8.CrossRefPubMed
45.
go back to reference Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA: Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000, 59: 880-888.PubMed Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA: Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000, 59: 880-888.PubMed
46.
go back to reference Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, Shimohama S, Perry G, Smith MA: Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. J Neurochem. 2001, 79: 311-318. 10.1046/j.1471-4159.2001.00597.x.CrossRefPubMed Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, Shimohama S, Perry G, Smith MA: Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. J Neurochem. 2001, 79: 311-318. 10.1046/j.1471-4159.2001.00597.x.CrossRefPubMed
47.
go back to reference Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M, Richardson JC: MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2006, 281: 23658-23667. 10.1074/jbc.M513646200.CrossRefPubMed Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M, Richardson JC: MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2006, 281: 23658-23667. 10.1074/jbc.M513646200.CrossRefPubMed
48.
go back to reference Ferrer I: Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice. Neurotox Res. 2004, 6: 469-475.CrossRefPubMed Ferrer I: Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice. Neurotox Res. 2004, 6: 469-475.CrossRefPubMed
49.
go back to reference Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F: Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis. 2002, 11: 257-274. 10.1006/nbdi.2002.0538.CrossRefPubMed Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F: Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis. 2002, 11: 257-274. 10.1006/nbdi.2002.0538.CrossRefPubMed
50.
go back to reference Jin Y, Yan EZ, Fan Y, Zong ZH, Qi ZM, Li Z: Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol. 2005, 26: 943-951. 10.1111/j.1745-7254.2005.00158.x.CrossRef Jin Y, Yan EZ, Fan Y, Zong ZH, Qi ZM, Li Z: Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol. 2005, 26: 943-951. 10.1111/j.1745-7254.2005.00158.x.CrossRef
51.
go back to reference Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW: Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J Neurosci. 2002, 22: 3376-3385.PubMed Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW: Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J Neurosci. 2002, 22: 3376-3385.PubMed
52.
go back to reference Franciosi S, Ryu JK, Choi HB, Radov L, Kim SU, McLarnon JG: Broad-spectrum effects of 4-aminopyridine to modulate amyloid β 1–42 -induced cell signaling and functional responses in human microglia. J Neurosci. 2006, 26: 11652-11664. 10.1523/JNEUROSCI.2490-06.2006.CrossRefPubMed Franciosi S, Ryu JK, Choi HB, Radov L, Kim SU, McLarnon JG: Broad-spectrum effects of 4-aminopyridine to modulate amyloid β 1–42 -induced cell signaling and functional responses in human microglia. J Neurosci. 2006, 26: 11652-11664. 10.1523/JNEUROSCI.2490-06.2006.CrossRefPubMed
53.
go back to reference Kim SH, Smith CJ, Van Eldik LJ: Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging. 2004, 25: 431-439. 10.1016/S0197-4580(03)00126-X.CrossRefPubMed Kim SH, Smith CJ, Van Eldik LJ: Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging. 2004, 25: 431-439. 10.1016/S0197-4580(03)00126-X.CrossRefPubMed
54.
go back to reference Koistinaho M, Koistinaho J: Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia. 2002, 40: 175-183. 10.1002/glia.10151.CrossRefPubMed Koistinaho M, Koistinaho J: Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia. 2002, 40: 175-183. 10.1002/glia.10151.CrossRefPubMed
55.
go back to reference McDonald DR, Bamberger ME, Combs CK, Landreth GE: beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci. 1998, 18: 4451-4460.PubMed McDonald DR, Bamberger ME, Combs CK, Landreth GE: beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci. 1998, 18: 4451-4460.PubMed
56.
go back to reference Pyo H, Jou I, Jung S, Hong S, Joe E-h: Mitogen-activated protein kinases activated by lipopolysaccharide and β-amyloid in cultured rat microglia. Neuroreport. 1998, 9: 871-874. 10.1097/00001756-199803300-00020.CrossRefPubMed Pyo H, Jou I, Jung S, Hong S, Joe E-h: Mitogen-activated protein kinases activated by lipopolysaccharide and β-amyloid in cultured rat microglia. Neuroreport. 1998, 9: 871-874. 10.1097/00001756-199803300-00020.CrossRefPubMed
57.
go back to reference Bhat NR, Zhang P, Lee JC, Hogan EL: Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 1998, 18: 1633-1641.PubMed Bhat NR, Zhang P, Lee JC, Hogan EL: Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 1998, 18: 1633-1641.PubMed
58.
go back to reference Lee YB, Schrader JW, Kim SU: p38 MAP kinase regulates TNF-α production in human astrocytes and microglia by multiple mechanisms. Cytokine. 2000, 12: 874-880. 10.1006/cyto.2000.0688.CrossRefPubMed Lee YB, Schrader JW, Kim SU: p38 MAP kinase regulates TNF-α production in human astrocytes and microglia by multiple mechanisms. Cytokine. 2000, 12: 874-880. 10.1006/cyto.2000.0688.CrossRefPubMed
59.
go back to reference Wermuth CG: Similarity in drugs: reflections on analogue design. Drug Discov Today. 2006, 11: 348-354. 10.1016/j.drudis.2006.02.006.CrossRefPubMed Wermuth CG: Similarity in drugs: reflections on analogue design. Drug Discov Today. 2006, 11: 348-354. 10.1016/j.drudis.2006.02.006.CrossRefPubMed
60.
go back to reference Pardridge WM: Blood-brain barrier delivery. Drug Discov Today. 2007, 12: 54-61. 10.1016/j.drudis.2006.10.013.CrossRefPubMed Pardridge WM: Blood-brain barrier delivery. Drug Discov Today. 2007, 12: 54-61. 10.1016/j.drudis.2006.10.013.CrossRefPubMed
61.
go back to reference Dury K: New methods in the chemistry of pyridazinones. Angew Chem Int Ed. 1965, 4: 292-300. 10.1002/anie.196502921.CrossRef Dury K: New methods in the chemistry of pyridazinones. Angew Chem Int Ed. 1965, 4: 292-300. 10.1002/anie.196502921.CrossRef
62.
go back to reference Raviña E, Teran C, Santana L, Garcia N, Estevez I: Pyridazine derivatives, IX. Synthesis of 2H-pyridazin-3-ones with aroylpiperazinyl group. Heterocycles. 1990, 31: 1967-1974.CrossRef Raviña E, Teran C, Santana L, Garcia N, Estevez I: Pyridazine derivatives, IX. Synthesis of 2H-pyridazin-3-ones with aroylpiperazinyl group. Heterocycles. 1990, 31: 1967-1974.CrossRef
63.
go back to reference Sotelo E, Fraiz N, Yanez M, Laguna R, Cano E, Ravina E: Pyridazines. Part 31: synthesis and antiplatelet activity of 4,5-disubstituted-6-phenyl-3(2H)-pyridazinones. Chem Pharm Bull (Tokyo). 2002, 50: 1574-1577. 10.1248/cpb.50.1574.CrossRef Sotelo E, Fraiz N, Yanez M, Laguna R, Cano E, Ravina E: Pyridazines. Part 31: synthesis and antiplatelet activity of 4,5-disubstituted-6-phenyl-3(2H)-pyridazinones. Chem Pharm Bull (Tokyo). 2002, 50: 1574-1577. 10.1248/cpb.50.1574.CrossRef
64.
go back to reference Guo Y, Shen H: Solubility and Lipophilicity: Assessing physicochemical properties of lead compounds. Methods in Pharmacology and Toxicology Optimization in Drug Discovery: In Vitro Methods. Edited by: Yan Z, Caldwell GW. 2004, Totowa, New Jersey: Humana Press, 1-17.CrossRef Guo Y, Shen H: Solubility and Lipophilicity: Assessing physicochemical properties of lead compounds. Methods in Pharmacology and Toxicology Optimization in Drug Discovery: In Vitro Methods. Edited by: Yan Z, Caldwell GW. 2004, Totowa, New Jersey: Humana Press, 1-17.CrossRef
65.
go back to reference Nasal A, Siluk D, Kaliszan R: Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr Med Chem. 2003, 10: 381-426.CrossRefPubMed Nasal A, Siluk D, Kaliszan R: Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr Med Chem. 2003, 10: 381-426.CrossRefPubMed
66.
go back to reference Streng WH: Physical chemical characterization of drug substances. Drug Discovery Today. 1997, 2: 415-426. 10.1016/S1359-6446(97)01077-5.CrossRef Streng WH: Physical chemical characterization of drug substances. Drug Discovery Today. 1997, 2: 415-426. 10.1016/S1359-6446(97)01077-5.CrossRef
67.
go back to reference Takacs-Novak K, Avdeef A: Interlaboratory study of log P determination by shake-flask and potentiometric methods. J Pharm Biomed Anal. 1996, 14: 1405-1413. 10.1016/0731-7085(96)01773-6.CrossRefPubMed Takacs-Novak K, Avdeef A: Interlaboratory study of log P determination by shake-flask and potentiometric methods. J Pharm Biomed Anal. 1996, 14: 1405-1413. 10.1016/0731-7085(96)01773-6.CrossRefPubMed
68.
go back to reference Behanna HA, Watterson DM, Ranaivo HR: Development of a novel bioavailable inhibitor of the calmodulin-regulated protein kinase MLCK: a lead compound that attenuates vascular leak. Biochim Biophys Acta. 2006, 1763: 1266-1274. 10.1016/j.bbamcr.2006.08.007.CrossRefPubMed Behanna HA, Watterson DM, Ranaivo HR: Development of a novel bioavailable inhibitor of the calmodulin-regulated protein kinase MLCK: a lead compound that attenuates vascular leak. Biochim Biophys Acta. 2006, 1763: 1266-1274. 10.1016/j.bbamcr.2006.08.007.CrossRefPubMed
69.
go back to reference Schumacher AM, Schavocky JP, Velentza AV, Mirzoeva S, Watterson DM: A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry. 2004, 43: 8116-8124. 10.1021/bi049589v.CrossRefPubMed Schumacher AM, Schavocky JP, Velentza AV, Mirzoeva S, Watterson DM: A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry. 2004, 43: 8116-8124. 10.1021/bi049589v.CrossRefPubMed
70.
go back to reference Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, Focia PJ, Egli M, Watterson DM: An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett. 2003, 13: 3465-3470. 10.1016/S0960-894X(03)00733-9.CrossRefPubMed Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, Focia PJ, Egli M, Watterson DM: An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett. 2003, 13: 3465-3470. 10.1016/S0960-894X(03)00733-9.CrossRefPubMed
71.
go back to reference Ackley DC, Rockich KT, Baker TR: Metabolic stability assessed by liver microsomes and hepatocytes. Methods in Pharmacology and Toxicology Optimization in Drug Discovery: In Vitro Methods. Edited by: Yan Z, Caldwell GW. 2004, Totowa, New Jersey: Humana Press, 151-162.CrossRef Ackley DC, Rockich KT, Baker TR: Metabolic stability assessed by liver microsomes and hepatocytes. Methods in Pharmacology and Toxicology Optimization in Drug Discovery: In Vitro Methods. Edited by: Yan Z, Caldwell GW. 2004, Totowa, New Jersey: Humana Press, 151-162.CrossRef
72.
go back to reference Hynes J, Leftheris K: Small molecule p38 inhibitors: novel structural features and advances from 2002 – 2005. Curr Topics Med Chem. 2005, 5: 967-985. 10.2174/1568026054985920.CrossRef Hynes J, Leftheris K: Small molecule p38 inhibitors: novel structural features and advances from 2002 – 2005. Curr Topics Med Chem. 2005, 5: 967-985. 10.2174/1568026054985920.CrossRef
73.
go back to reference Lee MR, Dominguez C: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr Med Chem. 2005, 12: 2979-2994. 10.2174/092986705774462914.CrossRefPubMed Lee MR, Dominguez C: MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38alpha protein. Curr Med Chem. 2005, 12: 2979-2994. 10.2174/092986705774462914.CrossRefPubMed
74.
go back to reference Peifer C, Wagner G, Laufer S: New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr Top Med Chem. 2006, 6: 113-149. 10.2174/156802606775270323.CrossRefPubMed Peifer C, Wagner G, Laufer S: New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr Top Med Chem. 2006, 6: 113-149. 10.2174/156802606775270323.CrossRefPubMed
75.
go back to reference Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed
76.
go back to reference Bhagwat SS, Manning AM, Hoekstra MF, Lewis A: Gene-regulating protein kinases as important anti-inflammatory targets. Drug Discov Today. 1999, 4: 472-479. 10.1016/S1359-6446(99)01402-6.CrossRefPubMed Bhagwat SS, Manning AM, Hoekstra MF, Lewis A: Gene-regulating protein kinases as important anti-inflammatory targets. Drug Discov Today. 1999, 4: 472-479. 10.1016/S1359-6446(99)01402-6.CrossRefPubMed
77.
78.
go back to reference Russ AP, Lampel S: The druggable genome: an update. Drug Discov Today. 2005, 10: 1607-1610. 10.1016/S1359-6446(05)03666-4.CrossRefPubMed Russ AP, Lampel S: The druggable genome: an update. Drug Discov Today. 2005, 10: 1607-1610. 10.1016/S1359-6446(05)03666-4.CrossRefPubMed
79.
go back to reference Li Y, Liu L, Barger SW, Griffin WS: Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci. 2003, 23: 1605-1611.PubMedCentralPubMed Li Y, Liu L, Barger SW, Griffin WS: Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci. 2003, 23: 1605-1611.PubMedCentralPubMed
Metadata
Title
A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model
Authors
Lenka Munoz
Hantamalala Ralay Ranaivo
Saktimayee M Roy
Wenhui Hu
Jeffrey M Craft
Laurie K McNamara
Laura Wing Chico
Linda J Van Eldik
D Martin Watterson
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2007
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-4-21

Other articles of this Issue 1/2007

Journal of Neuroinflammation 1/2007 Go to the issue