Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression

Authors: Graham W Kay, David N Palmer

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

The neuronal ceroid lipofuscinoses (NCLs; or Batten disease) are fatal inherited human neurodegenerative diseases affecting an estimated 1:12,500 live births worldwide. They are caused by mutations in at least 11 different genes. Currently, there are no effective treatments. Progress into understanding pathogenesis and possible therapies depends on studying animal models. The most studied animals are the CLN6 South Hampshire sheep, in which the course of neuropathology closely follows that in affected children. Neurodegeneration, a hallmark of the disease, has been linked to neuroinflammation and is consequent to it. Activation of astrocytes and microglia begins prenatally, starting from specific foci associated with the later development of progressive cortical atrophy and the development of clinical symptoms, including the occipital cortex and blindness. Both neurodegeneration and neuroinflammation generalize and become more severe with increasing age and increasing clinical severity. The purpose of this study was to determine if chronic administration of an anti-inflammatory drug, minocycline, from an early age would halt or reverse the development of disease.

Method

Minocycline, a tetracycline family antibiotic with activity against neuroinflammation, was tested by chronic oral administration of 25 mg minocycline/kg/day to presymptomatic lambs affected with CLN6 NCL at 3 months of age to 14 months of age, when clinical symptoms are obvious, to determine if this would suppress neuroinflammation or disease progression.

Results

Minocycline was absorbed without significant rumen biotransformation to maintain pharmacological concentrations of 1 μM in plasma and 400 nM in cerebrospinal fluid, but these did not result in inhibition of microglial activation or astrocytosis and did not change the neuronal loss or clinical course of the disease.

Conclusion

Oral administration is an effective route for drug delivery to the central nervous system in large animals, and model studies in these animals should precede highly speculative procedures in humans. Minocycline does not inhibit a critical step in the neuroinflammatory cascade in this form of Batten disease. Identification of the critical steps in the neuroinflammatory cascade in neurodegenerative diseases, and targeting of specific drugs to them, will greatly increase the likelihood of success.
Literature
1.
go back to reference Rider JA, Rider DL: Batten disease: past, present, and future. Am J Med Genet 1988, Suppl 5:21–26.CrossRef Rider JA, Rider DL: Batten disease: past, present, and future. Am J Med Genet 1988, Suppl 5:21–26.CrossRef
2.
go back to reference Kousi M, Lehesjoki AE, Mole SE: Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012, 33:42–63.CrossRefPubMed Kousi M, Lehesjoki AE, Mole SE: Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012, 33:42–63.CrossRefPubMed
3.
go back to reference Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ: Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet 2012, 21:2646–2650.CrossRefPubMedPubMedCentral Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ: Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet 2012, 21:2646–2650.CrossRefPubMedPubMedCentral
4.
go back to reference Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli JF, Sims KB, Tyynelä J, Van Broeckhoven C, Nijssen PC, Mole SE, Elleder M, Kmoch S: Mutations in DNAJC5 , encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet 2011, 89:241–252.CrossRefPubMedPubMedCentral Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli JF, Sims KB, Tyynelä J, Van Broeckhoven C, Nijssen PC, Mole SE, Elleder M, Kmoch S: Mutations in DNAJC5 , encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet 2011, 89:241–252.CrossRefPubMedPubMedCentral
5.
go back to reference Smith KR, Dah HHM, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grötzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M: Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet 2013, 22:1417–1423.CrossRefPubMedPubMedCentral Smith KR, Dah HHM, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grötzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M: Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet 2013, 22:1417–1423.CrossRefPubMedPubMedCentral
6.
go back to reference Tammen I, Houweling PJ, Frugier T, Mitchell NL, Kay GW, Cavanagh JAL, Cook RW, Raadsma HW, Palmer DN: A missense mutation (c.184C > T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA. Biochim Biophys Acta 2006, 1762:898–905.CrossRefPubMed Tammen I, Houweling PJ, Frugier T, Mitchell NL, Kay GW, Cavanagh JAL, Cook RW, Raadsma HW, Palmer DN: A missense mutation (c.184C > T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA. Biochim Biophys Acta 2006, 1762:898–905.CrossRefPubMed
7.
go back to reference Palmer DN, Martinus RD, Cooper SM, Midwinter GG, Reid JC, Jolly RD: Ovine ceroid-lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH 2 -terminal sequence. J Biol Chem 1989, 264:5736–5740.PubMed Palmer DN, Martinus RD, Cooper SM, Midwinter GG, Reid JC, Jolly RD: Ovine ceroid-lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH 2 -terminal sequence. J Biol Chem 1989, 264:5736–5740.PubMed
8.
go back to reference Palmer DN, Fearnley IM, Walker JE, Hall NA, Lake BD, Wolfe LS, Haltia M, Martinus RD, Jolly RD: Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 1992, 42:561–567.CrossRefPubMed Palmer DN, Fearnley IM, Walker JE, Hall NA, Lake BD, Wolfe LS, Haltia M, Martinus RD, Jolly RD: Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 1992, 42:561–567.CrossRefPubMed
9.
go back to reference Chen R, Fearnley IM, Palmer DN, Walker JE: Lysine 43 is trimethylated in subunit c from bovine mitochondrial ATP synthase and in storage bodies associated with Batten disease. J Biol Chem 2004, 279:21883–21887.CrossRefPubMed Chen R, Fearnley IM, Palmer DN, Walker JE: Lysine 43 is trimethylated in subunit c from bovine mitochondrial ATP synthase and in storage bodies associated with Batten disease. J Biol Chem 2004, 279:21883–21887.CrossRefPubMed
10.
go back to reference Palmer DN, Tammen I, Drögemüller C, Johnson GS, Katz ML, Lingaas F: Large animal models. In The neuronal ceroid lipofuscinoses (Batten disease). 2nd edition. Edited by: Mole SE, Williams RE, Goebel HH. New York: Oxford University Press; 2011:284–320.CrossRef Palmer DN, Tammen I, Drögemüller C, Johnson GS, Katz ML, Lingaas F: Large animal models. In The neuronal ceroid lipofuscinoses (Batten disease). 2nd edition. Edited by: Mole SE, Williams RE, Goebel HH. New York: Oxford University Press; 2011:284–320.CrossRef
11.
go back to reference Oswald MJ, Palmer DN, Kay GW, Barwell KJ, Cooper JD: Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol Dis 2008, 32:50–65.CrossRefPubMedPubMedCentral Oswald MJ, Palmer DN, Kay GW, Barwell KJ, Cooper JD: Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol Dis 2008, 32:50–65.CrossRefPubMedPubMedCentral
12.
go back to reference Oswald MJ, Palmer DN, Kay GW, Shemilt SJA, Rezaie P, Cooper JD: Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol Dis 2005, 20:49–63.CrossRefPubMed Oswald MJ, Palmer DN, Kay GW, Shemilt SJA, Rezaie P, Cooper JD: Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol Dis 2005, 20:49–63.CrossRefPubMed
13.
go back to reference Kay GW, Palmer DN, Rezaie P, Cooper JD: Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol 2006, 16:110–116.CrossRefPubMed Kay GW, Palmer DN, Rezaie P, Cooper JD: Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol 2006, 16:110–116.CrossRefPubMed
14.
go back to reference Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 1999, 30:77–105.CrossRefPubMed Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 1999, 30:77–105.CrossRefPubMed
15.
go back to reference Stoll G, Jander S: The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999, 58:233–247.CrossRefPubMed Stoll G, Jander S: The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999, 58:233–247.CrossRefPubMed
18.
go back to reference Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJM, van Gool WA, Hoozemans JJM: The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 2006, 113:1685–1695.CrossRefPubMed Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJM, van Gool WA, Hoozemans JJM: The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 2006, 113:1685–1695.CrossRefPubMed
19.
go back to reference Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006, 38:333–347.CrossRefPubMed Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006, 38:333–347.CrossRefPubMed
20.
go back to reference Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 2004, 17:359–366.CrossRefPubMed Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 2004, 17:359–366.CrossRefPubMed
21.
22.
go back to reference Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci (USA) 1998, 95:15769–15774.CrossRef Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci (USA) 1998, 95:15769–15774.CrossRef
23.
go back to reference Reinebrant HE, Wixey JA, Buller KM: Disruption of raphé serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic-ischemic brain injury. Eur J Neurosci 2012, 36:3483–3491.CrossRefPubMed Reinebrant HE, Wixey JA, Buller KM: Disruption of raphé serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic-ischemic brain injury. Eur J Neurosci 2012, 36:3483–3491.CrossRefPubMed
24.
go back to reference Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV: Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 2012, 3:111.CrossRefPubMedPubMedCentral Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV: Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 2012, 3:111.CrossRefPubMedPubMedCentral
25.
go back to reference Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC: Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 2012, 9:62.CrossRefPubMedPubMedCentral Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC: Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 2012, 9:62.CrossRefPubMedPubMedCentral
26.
go back to reference Kalonia H, Mishra J, Kumar A: Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox Res 2012, 22:310–320.CrossRefPubMed Kalonia H, Mishra J, Kumar A: Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox Res 2012, 22:310–320.CrossRefPubMed
27.
go back to reference Pijpers A, Schoevers EJ, Haagsma N, Verheijden JH: Plasma levels of oxytetracycline, doxycycline, and minocycline in pigs after oral administration in feed. J Anim Sci 1991, 69:4512–4522.CrossRefPubMed Pijpers A, Schoevers EJ, Haagsma N, Verheijden JH: Plasma levels of oxytetracycline, doxycycline, and minocycline in pigs after oral administration in feed. J Anim Sci 1991, 69:4512–4522.CrossRefPubMed
28.
go back to reference Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC: Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Expt Neurol 2004, 186:248–251.CrossRef Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC: Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Expt Neurol 2004, 186:248–251.CrossRef
29.
go back to reference Böcker RH, Peter R, Machbert G, Bauer W: Identification and determination of the two principal metabolites of minocycline in humans. J Chromatogr 1991, 568:363–374.CrossRefPubMed Böcker RH, Peter R, Machbert G, Bauer W: Identification and determination of the two principal metabolites of minocycline in humans. J Chromatogr 1991, 568:363–374.CrossRefPubMed
30.
go back to reference Agwuh KN, MacGowan A: Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006, 58:256–265.CrossRefPubMed Agwuh KN, MacGowan A: Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006, 58:256–265.CrossRefPubMed
31.
go back to reference Barza M, Brown RB, Shanks C, Gamble C, Weinstein L: Relation between lipophilicity and pharmacological behaviour of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother 1975, 8:713–720.CrossRefPubMedPubMedCentral Barza M, Brown RB, Shanks C, Gamble C, Weinstein L: Relation between lipophilicity and pharmacological behaviour of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother 1975, 8:713–720.CrossRefPubMedPubMedCentral
32.
go back to reference Aronson AL: Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 1980, 176:1061–1068.PubMed Aronson AL: Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 1980, 176:1061–1068.PubMed
33.
go back to reference Kremlev SG, Roberts RL, Palmer C: Differential expression of cytokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 2004, 149:1–9.CrossRefPubMed Kremlev SG, Roberts RL, Palmer C: Differential expression of cytokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 2004, 149:1–9.CrossRefPubMed
34.
go back to reference Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against N -methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001, 166:7527–7533.CrossRefPubMed Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against N -methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001, 166:7527–7533.CrossRefPubMed
35.
go back to reference Wang AL, Yu ACH, Lau LT, Lee C, Wu LM, Zhu XA, Tso MOM: Minocycline inhibits LPS-induced retinal microglia activation. Neurochem Internat 2005, 47:152–158.CrossRef Wang AL, Yu ACH, Lau LT, Lee C, Wu LM, Zhu XA, Tso MOM: Minocycline inhibits LPS-induced retinal microglia activation. Neurochem Internat 2005, 47:152–158.CrossRef
36.
37.
38.
go back to reference Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J Neurochem 2006, 96:706–718.CrossRefPubMed Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J Neurochem 2006, 96:706–718.CrossRefPubMed
39.
go back to reference Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL: Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004, 16:190–201.CrossRefPubMed Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL: Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004, 16:190–201.CrossRefPubMed
40.
go back to reference Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci (USA) 1999, 96:13496–13500.CrossRef Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci (USA) 1999, 96:13496–13500.CrossRef
41.
go back to reference Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM: TNF-α knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007, 26:36–46.CrossRefPubMedPubMedCentral Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM: TNF-α knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007, 26:36–46.CrossRefPubMedPubMedCentral
42.
go back to reference Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP: Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behaviour and anhedonia. J Neuroinflammation 2008, 5:15.CrossRefPubMedPubMedCentral Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP: Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behaviour and anhedonia. J Neuroinflammation 2008, 5:15.CrossRefPubMedPubMedCentral
43.
go back to reference Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763–1771.PubMed Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763–1771.PubMed
44.
go back to reference Boger HA, Middaugh LD, Granholm AC, McGinty JF: Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 2009, 33:459–466.CrossRefPubMed Boger HA, Middaugh LD, Granholm AC, McGinty JF: Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 2009, 33:459–466.CrossRefPubMed
45.
go back to reference McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2006, 28:639–647.CrossRefPubMed McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2006, 28:639–647.CrossRefPubMed
46.
go back to reference Tuppo EE, Arias HR: The role of inflammation in Alzheimer’s disease. Internat J Biochem Cell Biol 2005, 37:289–305.CrossRef Tuppo EE, Arias HR: The role of inflammation in Alzheimer’s disease. Internat J Biochem Cell Biol 2005, 37:289–305.CrossRef
47.
go back to reference Kielian T, Esen N, Lui S, Phulwani NK, Syed MM, Phillips N, Nishina K, Cheung AL, Schwartzman JD, Ruhe JJ: Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus -induced brain abscess. Am J Pathol 2007, 171:1199–1214.CrossRefPubMedPubMedCentral Kielian T, Esen N, Lui S, Phulwani NK, Syed MM, Phillips N, Nishina K, Cheung AL, Schwartzman JD, Ruhe JJ: Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus -induced brain abscess. Am J Pathol 2007, 171:1199–1214.CrossRefPubMedPubMedCentral
48.
go back to reference Kay GW, Jay NP, Palmer DN: The specific loss of GnRH-positive neurons from the hypothalamus of sheep with CLN6 neuronal ceroid lipofuscinosis occurs without glial activation and has only minor effects on reproduction. Neurobiol Dis 2011, 41:614–623.CrossRefPubMed Kay GW, Jay NP, Palmer DN: The specific loss of GnRH-positive neurons from the hypothalamus of sheep with CLN6 neuronal ceroid lipofuscinosis occurs without glial activation and has only minor effects on reproduction. Neurobiol Dis 2011, 41:614–623.CrossRefPubMed
49.
go back to reference Cooper JD: The neuronal ceroid lipofuscinoses: the same, but different? Biochem Soc Trans 2010, 38:1448–1452.CrossRefPubMed Cooper JD: The neuronal ceroid lipofuscinoses: the same, but different? Biochem Soc Trans 2010, 38:1448–1452.CrossRefPubMed
50.
go back to reference Nibe K, Nakayama H, Uchida K: Comparative study of cerebellar degeneration in canine neuroaxonal dystrophy, cerebellar cortical abiotrophy, and neuronal ceroid-lipofuscinosis. J Vet Med Sci 2010, 72:1495–1499.CrossRefPubMed Nibe K, Nakayama H, Uchida K: Comparative study of cerebellar degeneration in canine neuroaxonal dystrophy, cerebellar cortical abiotrophy, and neuronal ceroid-lipofuscinosis. J Vet Med Sci 2010, 72:1495–1499.CrossRefPubMed
51.
go back to reference Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH: Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet 2011, 20:1375–1386.CrossRefPubMed Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH: Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet 2011, 20:1375–1386.CrossRefPubMed
52.
go back to reference Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) α/βII . J Biol Chem 2007, 282:15208–15216.CrossRefPubMed Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) α/βII . J Biol Chem 2007, 282:15208–15216.CrossRefPubMed
53.
go back to reference Dalm D, Palm GJ, Aleksandrov A, Simonson T, Hinrichs W: Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phopholipase A 2 . J Mol Biol 2010, 398:83–96.CrossRefPubMed Dalm D, Palm GJ, Aleksandrov A, Simonson T, Hinrichs W: Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phopholipase A 2 . J Mol Biol 2010, 398:83–96.CrossRefPubMed
54.
go back to reference Schildknecht S, Pape R, Müller N, Robotta M, Marquardt A, Bürkle A, Drescher M, Leist M: Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2011, 286:4991–5002.CrossRefPubMed Schildknecht S, Pape R, Müller N, Robotta M, Marquardt A, Bürkle A, Drescher M, Leist M: Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2011, 286:4991–5002.CrossRefPubMed
55.
go back to reference Garwood CJ, Cooper JD, Hanger DP, Noble W: Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 2010,1(136):1–8. Garwood CJ, Cooper JD, Hanger DP, Noble W: Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 2010,1(136):1–8.
56.
go back to reference Schwarz H, Hickey C, Zimmerman C, Mazzoni P, Moskowitz C, Rosas D, McCall M, Sanchez-Ramos J, Perlmutter J, Wernle A, Higgins D, Nickerson C, Evans S, Kumar R, Miracle D, Dure L, Pendley D, Anderson K, Cines M, Ashizawa T, Stanton P, Fernandez H, Suelter M, Leavitt B, Decolongon J, Cudkowicz M, McDermott MP, Kieburtz K, Marshall F, Cha JH, Huntington Study Group DOMINO Investigators, et al.: A futility study of minocycline in Huntington’s disease. Mov Disord 2010, 25:2219–2224.CrossRef Schwarz H, Hickey C, Zimmerman C, Mazzoni P, Moskowitz C, Rosas D, McCall M, Sanchez-Ramos J, Perlmutter J, Wernle A, Higgins D, Nickerson C, Evans S, Kumar R, Miracle D, Dure L, Pendley D, Anderson K, Cines M, Ashizawa T, Stanton P, Fernandez H, Suelter M, Leavitt B, Decolongon J, Cudkowicz M, McDermott MP, Kieburtz K, Marshall F, Cha JH, Huntington Study Group DOMINO Investigators, et al.: A futility study of minocycline in Huntington’s disease. Mov Disord 2010, 25:2219–2224.CrossRef
Metadata
Title
Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression
Authors
Graham W Kay
David N Palmer
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-97

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue