Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain

Authors: Maj-Linda B Selenica, Jennifer A Alvarez, Kevin R Nash, Daniel C Lee, Chuanhai Cao, Xiaoyang Lin, Patrick Reid, Peter R Mouton, Dave Morgan, Marcia N Gordon

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

The chemokine (C-C motif) ligand 2 (CCL2) is a monocyte chemoattractant protein that mediates macrophage recruitment and migration during peripheral and central nervous system (CNS) inflammation.

Methods

To determine the impact of CCL2 in inflammation in vivo and to elucidate the CCL2-induced polarization of activated brain microglia, we delivered CCL2 into the brains of wild-type mice via recombinant adeno-associated virus serotype 9 (rAAV-9) driven by the chicken β-actin promoter. We measured microglial activation using histological and chemical measurement and recruitment of monocytes using histology and flow cytometry.

Results

The overexpression of CCL2 in the CNS induced significant activation of brain resident microglia. CD45 and major histocompatibility complex class II immunoreactivity significantly increased at the sites of CCL2 administration. Histological characterization of the microglial phenotype revealed the elevation of “classically activated” microglial markers, such as calgranulin B and IL-1β, as well as markers associated with “alternative activation” of microglia, including YM1 and arginase 1. The protein expression profile in the hippocampus demonstrated markedly increased levels of IL-6, GM-CSF and eotaxin (CCL-11) in response to CCL2, but no changes in the levels of other cytokines, including TNF-α and IFN-γ. Moreover, real-time PCR analysis confirmed increases in mRNA levels of gene transcripts associated with neuroinflammation following CCL2 overexpression. Finally, we investigated the chemotactic properties of CCL2 in vivo by performing adoptive transfer of bone marrow–derived cells (BMDCs) isolated from donor mice that ubiquitously expressed green fluorescent protein. Flow cytometry and histological analyses indicated that BMDCs extravasated into brain parenchyma and colabeled with microglial markers.

Conclusion

Taken together, our results suggest that CCL2 strongly activates resident microglia in the brain. Both pro- and anti-inflammatory activation of microglia were prominent, with no bias toward the M1 or M2 phenotype in the activated cells. As expected, CCL2 overexpression actively recruited circulating monocytes into the CNS. Thus, CCL2 expression in mouse brain induces microglial activation and represents an efficient method for recruitment of peripheral macrophages.
Literature
1.
go back to reference Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN: Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 2003, 23:748–755.CrossRefPubMed Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN: Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 2003, 23:748–755.CrossRefPubMed
2.
go back to reference Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE: Amyloid-β induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol Med 1998, 4:480–489.PubMedPubMedCentral Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE: Amyloid-β induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol Med 1998, 4:480–489.PubMedPubMedCentral
3.
go back to reference Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA: Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 1995, 155:5769–5776.PubMed Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA: Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 1995, 155:5769–5776.PubMed
4.
go back to reference Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM: Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav Immun 1995, 9:315–330.CrossRefPubMed Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM: Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav Immun 1995, 9:315–330.CrossRefPubMed
5.
go back to reference Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998, 2:275–281.CrossRefPubMed Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998, 2:275–281.CrossRefPubMed
6.
go back to reference Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM: Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 1992, 90:772–779.CrossRefPubMedPubMedCentral Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM: Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 1992, 90:772–779.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Prinz M, Priller J: Tickets to the brain: role of CCR2 and CX 3 CR 1 in myeloid cell entry in the CNS. J Neuroimmunol 2010, 224:80–84.CrossRefPubMed Prinz M, Priller J: Tickets to the brain: role of CCR2 and CX 3 CR 1 in myeloid cell entry in the CNS. J Neuroimmunol 2010, 224:80–84.CrossRefPubMed
9.
go back to reference Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6C hi CCR2 + monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.CrossRefPubMed Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6C hi CCR2 + monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.CrossRefPubMed
10.
go back to reference Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713–726.CrossRefPubMedPubMedCentral Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193:713–726.CrossRefPubMedPubMedCentral
11.
go back to reference Berman JW, Guida MP, Warren J, Amat J, Brosnan CF: Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 1996, 156:3017–3023.PubMed Berman JW, Guida MP, Warren J, Amat J, Brosnan CF: Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 1996, 156:3017–3023.PubMed
12.
go back to reference Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO: Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 1998, 95:3117–3121.CrossRefPubMedPubMedCentral Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO: Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 1998, 95:3117–3121.CrossRefPubMedPubMedCentral
13.
go back to reference Mahad DJ, Ransohoff RM: The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 2003, 15:23–32.CrossRefPubMed Mahad DJ, Ransohoff RM: The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 2003, 15:23–32.CrossRefPubMed
14.
go back to reference McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 1998, 86:20–29.CrossRefPubMed McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 1998, 86:20–29.CrossRefPubMed
15.
go back to reference Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49:489–502.CrossRefPubMed Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49:489–502.CrossRefPubMed
16.
go back to reference El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.CrossRefPubMed El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.CrossRefPubMed
17.
go back to reference Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT: CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 2010, 177:2549–2562.CrossRefPubMedPubMedCentral Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT: CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 2010, 177:2549–2562.CrossRefPubMedPubMedCentral
18.
go back to reference Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA: Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008, 14:681–687.PubMedPubMedCentral Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA: Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008, 14:681–687.PubMedPubMedCentral
19.
go back to reference Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T: CCL2 accelerates microglia-mediated Aβ oligomer formation and progression of neurocognitive dysfunction. PLoS One 2009, 4:e6197.CrossRefPubMedPubMedCentral Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T: CCL2 accelerates microglia-mediated Aβ oligomer formation and progression of neurocognitive dysfunction. PLoS One 2009, 4:e6197.CrossRefPubMedPubMedCentral
20.
go back to reference Wyss-Coray T: Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006, 12:1005–1015.PubMed Wyss-Coray T: Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006, 12:1005–1015.PubMed
21.
go back to reference Galimberti D, Fenoglio C, Lovati C, Venturelli E, Guidi I, Corra B, Scalabrini D, Clerici F, Mariani C, Bresolin N, Scarpini E: Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol Aging 2006, 27:1763–1768.CrossRefPubMed Galimberti D, Fenoglio C, Lovati C, Venturelli E, Guidi I, Corra B, Scalabrini D, Clerici F, Mariani C, Bresolin N, Scarpini E: Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol Aging 2006, 27:1763–1768.CrossRefPubMed
22.
go back to reference Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T: Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 1997, 51:135–138.CrossRefPubMed Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T: Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 1997, 51:135–138.CrossRefPubMed
23.
go back to reference Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed
24.
go back to reference Kraft AD, McPherson CA, Harry GJ: Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 2009, 30:785–793.CrossRefPubMedPubMedCentral Kraft AD, McPherson CA, Harry GJ: Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 2009, 30:785–793.CrossRefPubMedPubMedCentral
25.
go back to reference Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review. Glia 1988, 1:301–307.CrossRefPubMed Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review. Glia 1988, 1:301–307.CrossRefPubMed
26.
28.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677–686.CrossRefPubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677–686.CrossRefPubMed
29.
go back to reference Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13:453–461.CrossRefPubMed Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13:453–461.CrossRefPubMed
30.
go back to reference Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF: MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999, 103:773–778.CrossRefPubMedPubMedCentral Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF: MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999, 103:773–778.CrossRefPubMedPubMedCentral
31.
go back to reference Gonzalo JA, Lloyd CM, Wen D, Albar JP, Wells TN, Proudfoot A, Martinez-A C, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos JC: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 1998, 188:157–167.CrossRefPubMedPubMedCentral Gonzalo JA, Lloyd CM, Wen D, Albar JP, Wells TN, Proudfoot A, Martinez-A C, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos JC: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 1998, 188:157–167.CrossRefPubMedPubMedCentral
32.
go back to reference Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ: Control of T H 2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000, 404:407–411.CrossRefPubMed Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ: Control of T H 2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000, 404:407–411.CrossRefPubMed
33.
go back to reference Elhofy A, Wang J, Tani M, Fife BT, Kennedy KJ, Bennett J, Huang D, Ransohoff RM, Karpus WJ: Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J Leukoc Biol 2005, 77:229–237.CrossRefPubMed Elhofy A, Wang J, Tani M, Fife BT, Kennedy KJ, Bennett J, Huang D, Ransohoff RM, Karpus WJ: Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J Leukoc Biol 2005, 77:229–237.CrossRefPubMed
34.
go back to reference Karpus WJ, Kennedy KJ: MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol 1997, 62:681–687.PubMed Karpus WJ, Kennedy KJ: MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol 1997, 62:681–687.PubMed
35.
go back to reference Carty N, Nash KR, Brownlow M, Cruite D, Wilcock D, Selenica ML, Lee DC, Gordon MN, Morgan D: Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP+PS1 transgenic mice. PLoS One 2013, 8:e59626.CrossRefPubMedPubMedCentral Carty N, Nash KR, Brownlow M, Cruite D, Wilcock D, Selenica ML, Lee DC, Gordon MN, Morgan D: Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP+PS1 transgenic mice. PLoS One 2013, 8:e59626.CrossRefPubMedPubMedCentral
36.
go back to reference Cearley CN, Wolfe JH: A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 2007, 27:9928–9940.CrossRefPubMed Cearley CN, Wolfe JH: A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 2007, 27:9928–9940.CrossRefPubMed
37.
go back to reference Nash KR, Cardenas-Aguayo MC, Berg MJ, Marks N: Transduction of E13 murine neural precursor cells by non-immunogenic recombinant adeno-associated viruses induces major changes in neuronal phenotype. Neuroscience 2012, 210:82–98.CrossRefPubMed Nash KR, Cardenas-Aguayo MC, Berg MJ, Marks N: Transduction of E13 murine neural precursor cells by non-immunogenic recombinant adeno-associated viruses induces major changes in neuronal phenotype. Neuroscience 2012, 210:82–98.CrossRefPubMed
38.
go back to reference Zincarelli C, Soltys S, Rengo G, Rabinowitz JE: Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008, 16:1073–1080.CrossRefPubMed Zincarelli C, Soltys S, Rengo G, Rabinowitz JE: Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008, 16:1073–1080.CrossRefPubMed
39.
go back to reference Carty N, Lee D, Dickey C, Ceballos-Diaz C, Jansen-West K, Golde TE, Gordon MN, Morgan D, Nash K: Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010, 194:144–153.CrossRefPubMedPubMedCentral Carty N, Lee D, Dickey C, Ceballos-Diaz C, Jansen-West K, Golde TE, Gordon MN, Morgan D, Nash K: Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010, 194:144–153.CrossRefPubMedPubMedCentral
40.
go back to reference Lebson L, Nash K, Kamath S, Herber D, Carty N, Lee DC, Li Q, Szekeres K, Jinwal U, Koren J, Dickey CA, Gottschall PE, Morgan D, Gordon MN: Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 2010, 30:9651–9658.CrossRefPubMedPubMedCentral Lebson L, Nash K, Kamath S, Herber D, Carty N, Lee DC, Li Q, Szekeres K, Jinwal U, Koren J, Dickey CA, Gottschall PE, Morgan D, Gordon MN: Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 2010, 30:9651–9658.CrossRefPubMedPubMedCentral
41.
go back to reference Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D: Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 2002, 173:183–195.CrossRefPubMed Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D: Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 2002, 173:183–195.CrossRefPubMed
42.
go back to reference Schnell SA, Staines WA, Wessendorf MW: Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 1999, 47:719–730.CrossRefPubMed Schnell SA, Staines WA, Wessendorf MW: Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 1999, 47:719–730.CrossRefPubMed
43.
go back to reference Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008, 28:8354–8360.CrossRefPubMedPubMedCentral Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008, 28:8354–8360.CrossRefPubMedPubMedCentral
44.
go back to reference Gundersen HJ: Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 1986, 143:3–45.CrossRefPubMed Gundersen HJ: Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 1986, 143:3–45.CrossRefPubMed
45.
go back to reference Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, Sariola H, Tryggvason K: Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem 1998, 273:4530–4538.CrossRefPubMed Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, Sariola H, Tryggvason K: Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem 1998, 273:4530–4538.CrossRefPubMed
46.
go back to reference Gaikwad S, Larionov S, Wang Y, Dannenberg H, Matozaki T, Monsonego A, Thal DR, Neumann H: Signal regulatory protein-β1: a microglial modulator of phagocytosis in Alzheimer’s disease. Am J Pathol 2009, 175:2528–2539.CrossRefPubMedPubMedCentral Gaikwad S, Larionov S, Wang Y, Dannenberg H, Matozaki T, Monsonego A, Thal DR, Neumann H: Signal regulatory protein-β1: a microglial modulator of phagocytosis in Alzheimer’s disease. Am J Pathol 2009, 175:2528–2539.CrossRefPubMedPubMedCentral
47.
go back to reference Ridinger K, Ilg EC, Niggli FK, Heizmann CW, Schäfer BW: Clustered organization of S100 genes in human and mouse. Biochim Biophys Acta 1998, 1448:254–263.CrossRefPubMed Ridinger K, Ilg EC, Niggli FK, Heizmann CW, Schäfer BW: Clustered organization of S100 genes in human and mouse. Biochim Biophys Acta 1998, 1448:254–263.CrossRefPubMed
48.
go back to reference Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C: Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 1987, 330:80–82.CrossRefPubMed Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C: Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 1987, 330:80–82.CrossRefPubMed
49.
go back to reference Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97:889–901.CrossRefPubMed Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM: RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97:889–901.CrossRefPubMed
50.
go back to reference Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Berry MF, Burdick J, Bhalla RC, Sharma RV, Gardner TJ, Sweeney HL: Inhibition of matrix metalloproteinase activity by TIMP-1 gene transfer effectively treats ischemic cardiomyopathy. Circulation 2004,110(11 Suppl 1):II180-II186.PubMed Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Berry MF, Burdick J, Bhalla RC, Sharma RV, Gardner TJ, Sweeney HL: Inhibition of matrix metalloproteinase activity by TIMP-1 gene transfer effectively treats ischemic cardiomyopathy. Circulation 2004,110(11 Suppl 1):II180-II186.PubMed
51.
go back to reference Ridnour LA, Dhanapal S, Hoos M, Wilson J, Lee J, Cheng RY, Brueggemann EE, Hines HB, Wilcock DM, Vitek MP, Wink DA, Colton CA: Nitric oxide-mediated regulation of β-amyloid clearance via alterations of MMP-9/TIMP-1. J Neurochem 2012, 123:736–749.CrossRefPubMedPubMedCentral Ridnour LA, Dhanapal S, Hoos M, Wilson J, Lee J, Cheng RY, Brueggemann EE, Hines HB, Wilcock DM, Vitek MP, Wink DA, Colton CA: Nitric oxide-mediated regulation of β-amyloid clearance via alterations of MMP-9/TIMP-1. J Neurochem 2012, 123:736–749.CrossRefPubMedPubMedCentral
52.
go back to reference Combs CK, Karlo JC, Kao SC, Landreth GE: β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21:1179–1188.PubMed Combs CK, Karlo JC, Kao SC, Landreth GE: β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21:1179–1188.PubMed
53.
go back to reference Rosenfeld RG: Insulin-like growth factors and the basis of growth. N Engl J Med 2003, 349:2184–2186.CrossRefPubMed Rosenfeld RG: Insulin-like growth factors and the basis of growth. N Engl J Med 2003, 349:2184–2186.CrossRefPubMed
54.
go back to reference Spector EB, Rice SC, Cederbaum SD: Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res 1983, 17:941–944.CrossRefPubMed Spector EB, Rice SC, Cederbaum SD: Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res 1983, 17:941–944.CrossRefPubMed
55.
go back to reference Banerjee RR, Lazar MA: Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J Biol Chem 2001, 276:25970–25973.CrossRefPubMed Banerjee RR, Lazar MA: Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J Biol Chem 2001, 276:25970–25973.CrossRefPubMed
56.
go back to reference Menzies-Gow A, Ying S, Sabroe I, Stubbs VL, Soler D, Williams TJ, Kay AB: Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J Immunol 2002, 169:2712–2718.CrossRefPubMed Menzies-Gow A, Ying S, Sabroe I, Stubbs VL, Soler D, Williams TJ, Kay AB: Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J Immunol 2002, 169:2712–2718.CrossRefPubMed
57.
go back to reference Kitaura M, Suzuki N, Imai T, Takagi S, Suzuki R, Nakajima T, Hirai K, Nomiyama H, Yoshie O: Molecular cloning of a novel human CC chemokine (eotaxin-3) that is a functional ligand of CC chemokine receptor 3. J Biol Chem 1999, 274:27975–27980.CrossRefPubMed Kitaura M, Suzuki N, Imai T, Takagi S, Suzuki R, Nakajima T, Hirai K, Nomiyama H, Yoshie O: Molecular cloning of a novel human CC chemokine (eotaxin-3) that is a functional ligand of CC chemokine receptor 3. J Biol Chem 1999, 274:27975–27980.CrossRefPubMed
58.
go back to reference Cormier SA, Yuan S, Crosby JR, Protheroe CA, Dimina DM, Hines EM, Lee NA, Lee JJ: T H 2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages. Am J Respir Cell Mol Biol 2002, 27:678–687.CrossRefPubMed Cormier SA, Yuan S, Crosby JR, Protheroe CA, Dimina DM, Hines EM, Lee NA, Lee JJ: T H 2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages. Am J Respir Cell Mol Biol 2002, 27:678–687.CrossRefPubMed
59.
go back to reference Lee DC, Ruiz CR, Lebson L, Selenica ML, Rizer J, Hunt JB Jr, Rojiani R, Reid P, Kammath S, Nash K, Dickey CA, Gordon M, Morgan D: Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 2013, 34:1610–1620.CrossRefPubMedPubMedCentral Lee DC, Ruiz CR, Lebson L, Selenica ML, Rizer J, Hunt JB Jr, Rojiani R, Reid P, Kammath S, Nash K, Dickey CA, Gordon M, Morgan D: Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 2013, 34:1610–1620.CrossRefPubMedPubMedCentral
60.
go back to reference Nolan T, Hands RE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Nat Protoc 2006, 1:1559–1582.CrossRefPubMed Nolan T, Hands RE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Nat Protoc 2006, 1:1559–1582.CrossRefPubMed
61.
go back to reference Gehrmann J, Banati RB, Kreutzberg GW: Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 1993, 48:189–198.CrossRefPubMed Gehrmann J, Banati RB, Kreutzberg GW: Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 1993, 48:189–198.CrossRefPubMed
62.
go back to reference Mori T, Tan J, Arendash GW, Koyama N, Nojima Y, Town T: Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke 2008, 39:2114–2121.CrossRefPubMedPubMedCentral Mori T, Tan J, Arendash GW, Koyama N, Nojima Y, Town T: Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke 2008, 39:2114–2121.CrossRefPubMedPubMedCentral
63.
go back to reference Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 1996, 197:139–50.CrossRefPubMed Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 1996, 197:139–50.CrossRefPubMed
64.
go back to reference Colton CA, Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010, 9:174–191.CrossRefPubMed Colton CA, Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010, 9:174–191.CrossRefPubMed
65.
go back to reference Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D: Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 2003, 23:5219–5226.PubMed Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D: Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 2003, 23:5219–5226.PubMed
66.
go back to reference Ruhul Amin AR, Machida K, Oshima K, Oo ML, Thant AA, Senga T, Matsuda S, Akhand AA, Maeda A, Kurosaki T, Hamaguchi M: A role for SHPS-1/SIRPα1 in IL-1β- and TNFα-dependent signaling. Oncogene 2002, 21:8871–8878.CrossRefPubMed Ruhul Amin AR, Machida K, Oshima K, Oo ML, Thant AA, Senga T, Matsuda S, Akhand AA, Maeda A, Kurosaki T, Hamaguchi M: A role for SHPS-1/SIRPα1 in IL-1β- and TNFα-dependent signaling. Oncogene 2002, 21:8871–8878.CrossRefPubMed
67.
go back to reference Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C: The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010, 224:93–100.CrossRefPubMed Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C: The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010, 224:93–100.CrossRefPubMed
68.
go back to reference Burger C, Nash K, Mandel RJ: Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 2005, 16:781–791.CrossRefPubMed Burger C, Nash K, Mandel RJ: Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 2005, 16:781–791.CrossRefPubMed
69.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.CrossRefPubMedPubMedCentral Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.CrossRefPubMedPubMedCentral
70.
go back to reference Ransohoff RM: Microglia and monocytes: ’tis plain the twain meet in the brain. Nat Neurosci 2011, 14:1098–1100.CrossRefPubMed Ransohoff RM: Microglia and monocytes: ’tis plain the twain meet in the brain. Nat Neurosci 2011, 14:1098–1100.CrossRefPubMed
71.
go back to reference Gomez Perdiguero E, Schulz C, Geissmann F: Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 2013, 61:112–120.CrossRefPubMed Gomez Perdiguero E, Schulz C, Geissmann F: Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 2013, 61:112–120.CrossRefPubMed
72.
go back to reference Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR: Analysis of fractalkine receptor CX 3 CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000, 20:4106–4114.CrossRefPubMedPubMedCentral Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR: Analysis of fractalkine receptor CX 3 CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000, 20:4106–4114.CrossRefPubMedPubMedCentral
73.
go back to reference Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 2010, 5:e13693.CrossRefPubMedPubMedCentral Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 2010, 5:e13693.CrossRefPubMedPubMedCentral
74.
go back to reference Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M: CCR2 + Ly-6C hi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009, 132:2487–2500.CrossRefPubMed Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M: CCR2 + Ly-6C hi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009, 132:2487–2500.CrossRefPubMed
75.
go back to reference Schilling M, Strecker JK, Schabitz WR, Ringelstein EB, Kiefer R: Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009, 161:806–812.CrossRefPubMed Schilling M, Strecker JK, Schabitz WR, Ringelstein EB, Kiefer R: Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009, 161:806–812.CrossRefPubMed
76.
go back to reference Schellenberg AE, Buist R, Del Bigio MR, Toft-Hansen H, Khorooshi R, Owens T, Peeling J: Blood–brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids Barriers CNS 2012, 9:10.CrossRefPubMedPubMedCentral Schellenberg AE, Buist R, Del Bigio MR, Toft-Hansen H, Khorooshi R, Owens T, Peeling J: Blood–brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids Barriers CNS 2012, 9:10.CrossRefPubMedPubMedCentral
77.
go back to reference Huang D, Tani M, Wang J, Han Y, He TT, Weaver J, Charo IF, Tuohy VK, Rollins BJ, Ransohoff RM: Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 2002, 22:10633–10642.PubMed Huang D, Tani M, Wang J, Han Y, He TT, Weaver J, Charo IF, Tuohy VK, Rollins BJ, Ransohoff RM: Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 2002, 22:10633–10642.PubMed
78.
go back to reference Bennett JL, Elhofy A, Canto MC, Tani M, Ransohoff RM, Karpus WJ: CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45 high CD11b + monocytes and enhanced Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 2003, 9:623–636.PubMed Bennett JL, Elhofy A, Canto MC, Tani M, Ransohoff RM, Karpus WJ: CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45 high CD11b + monocytes and enhanced Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 2003, 9:623–636.PubMed
79.
go back to reference Trujillo JA, Fleming EL, Perlman S: Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection. J Virol 2013, 87:2376–2389.CrossRefPubMedPubMedCentral Trujillo JA, Fleming EL, Perlman S: Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection. J Virol 2013, 87:2376–2389.CrossRefPubMedPubMedCentral
80.
go back to reference Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, MacIntyre DE, Abbadie C: Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience 2007, 149:706–714.CrossRefPubMed Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, MacIntyre DE, Abbadie C: Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience 2007, 149:706–714.CrossRefPubMed
81.
go back to reference Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM: Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 2005, 19:761–772.CrossRefPubMed Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM: Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 2005, 19:761–772.CrossRefPubMed
82.
go back to reference Matsukawa A, Lukacs NW, Standiford TJ, Chensue SW, Kunkel SL: Adenoviral-mediated overexpression of monocyte chemoattractant protein-1 differentially alters the development of Th1 and Th2 type responses in vivo. J Immunol 2000, 164:1699–1704.CrossRefPubMed Matsukawa A, Lukacs NW, Standiford TJ, Chensue SW, Kunkel SL: Adenoviral-mediated overexpression of monocyte chemoattractant protein-1 differentially alters the development of Th1 and Th2 type responses in vivo. J Immunol 2000, 164:1699–1704.CrossRefPubMed
83.
go back to reference Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE: Gene expression changes by amyloid β peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 2006, 79:596–610.CrossRefPubMed Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE: Gene expression changes by amyloid β peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 2006, 79:596–610.CrossRefPubMed
84.
go back to reference Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM: RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996, 382:685–691.CrossRefPubMed Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM: RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996, 382:685–691.CrossRefPubMed
85.
go back to reference Foell D, Frosch M, Sorg C, Roth J: Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 2004, 344:37–51.CrossRefPubMed Foell D, Frosch M, Sorg C, Roth J: Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 2004, 344:37–51.CrossRefPubMed
86.
go back to reference Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT: Regulation of tau pathology by the microglial fractalkine receptor. Neuron 2010, 68:19–31.CrossRefPubMedPubMedCentral Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT: Regulation of tau pathology by the microglial fractalkine receptor. Neuron 2010, 68:19–31.CrossRefPubMedPubMedCentral
87.
go back to reference Naert G, Rivest S: Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Mol Med 2012, 18:297–313.CrossRefPubMed Naert G, Rivest S: Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Mol Med 2012, 18:297–313.CrossRefPubMed
88.
go back to reference Kiyota T, Yamamoto M, Schroder B, Jacobsen MT, Swan RJ, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T: AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, β-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 2009, 17:803–809.CrossRefPubMedPubMedCentral Kiyota T, Yamamoto M, Schroder B, Jacobsen MT, Swan RJ, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T: AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, β-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 2009, 17:803–809.CrossRefPubMedPubMedCentral
89.
go back to reference Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T: Overexpression of monocyte chemotactic protein-1/CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. Am J Pathol 2005, 166:1475–1485.CrossRefPubMedPubMedCentral Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T: Overexpression of monocyte chemotactic protein-1/CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. Am J Pathol 2005, 166:1475–1485.CrossRefPubMedPubMedCentral
90.
go back to reference Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1 M146L /APP 751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1 M146L /APP 751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed
91.
go back to reference Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK: Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 2007, 117:1595–1604.CrossRefPubMedPubMedCentral Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK: Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 2007, 117:1595–1604.CrossRefPubMedPubMedCentral
92.
go back to reference Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493:674–678.CrossRefPubMed Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493:674–678.CrossRefPubMed
93.
go back to reference Bhaskar K, Yen SH, Lee G: Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 2005, 280:35119–35125.CrossRefPubMed Bhaskar K, Yen SH, Lee G: Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 2005, 280:35119–35125.CrossRefPubMed
94.
go back to reference Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D: LPS-induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 2010, 7:56.CrossRefPubMedPubMedCentral Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D: LPS-induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 2010, 7:56.CrossRefPubMedPubMedCentral
95.
go back to reference Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE: Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 2009, 19:392–398.CrossRefPubMed Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE: Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 2009, 19:392–398.CrossRefPubMed
96.
go back to reference Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O: CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 2012, 7:e30525.CrossRefPubMedPubMedCentral Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O: CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 2012, 7:e30525.CrossRefPubMedPubMedCentral
Metadata
Title
Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain
Authors
Maj-Linda B Selenica
Jennifer A Alvarez
Kevin R Nash
Daniel C Lee
Chuanhai Cao
Xiaoyang Lin
Patrick Reid
Peter R Mouton
Dave Morgan
Marcia N Gordon
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-86

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue