Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2010

Open Access 01-12-2010 | Research article

The effects of acute and prolonged CRAM supplementation on reaction time and subjective measures of focus and alertness in healthy college students

Authors: Jay R Hoffman, Nicholas A Ratamess, Adam Gonzalez, Noah A Beller, Mattan W Hoffman, Mark Olson, Martin Purpura, Ralf Jäger

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2010

Login to get access

Abstract

Background

The purpose of this study was to examine the effect of acute and prolonged (4-weeks) ingestion of a supplement designed to improve reaction time and subjective measures of alertness, energy, fatigue, and focus compared to placebo.

Methods

Nineteen physically-active subjects (17 men and 2 women) were randomly assigned to a group that either consumed a supplement (21.1 ± 0.6 years; body mass: 80.6 ± 9.4 kg) or placebo (21.3 ± 0.8 years; body mass: 83.4 ± 18.5 kg). During the initial testing session (T1), subjects were provided 1.5 g of the supplement (CRAM; α-glycerophosphocholine, choline bitartrate, phosphatidylserine, vitamins B3, B6, and B12, folic acid, L-tyrosine, anhydrous caffeine, acetyl-L-carnitine, and naringin) or a placebo (PL), and rested quietly for 10-minutes before completing a questionnaire on subjective feelings of energy, fatigue, alertness and focus (PRE). Subjects then performed a 4-minute quickness and reaction test followed by a 10-min bout of exhaustive exercise. The questionnaire and reaction testing sequence was then repeated (POST). Subjects reported back to the lab (T2) following 4-weeks of supplementation and repeated the testing sequence.

Results

Reaction time significantly declined (p = 0.050) between PRE and POST at T1 in subjects consuming PL, while subjects under CRAM supplementation were able to maintain (p = 0.114) their performance. Significant performance declines were seen in both groups from PRE to POST at T2. Elevations in fatigue were seen for CRAM at both T1 and T2 (p = 0.001 and p = 0.000, respectively), but only at T2 for PL (p = 0.029). Subjects in CRAM maintained focus between PRE and POST during both T1 and T2 trials (p = 0.152 and p = 0.082, respectively), whereas significant declines in focus were observed between PRE and POST in PL at both trials (p = 0.037 and p = 0.014, respectively). No difference in alertness was seen at T1 between PRE and POST for CRAM (p = 0.083), but a significant decline was recorded at T2 (p = 0.005). Alertness was significantly lower at POST at both T1 and T2 for PL (p = 0.040 and p = 0.33, respectively). No differences in any of these subjective measures were seen between the groups at any time point.

Conclusion

Results indicate that acute ingestion of CRAM can maintain reaction time, and subjective feelings of focus and alertness to both visual and auditory stimuli in healthy college students following exhaustive exercise. However, some habituation may occur following 4-weeks of supplementation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Amenta F, Tayebati SK: Pathwasy of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem. 2008, 15: 488-498. 10.2174/092986708783503203.CrossRefPubMed Amenta F, Tayebati SK: Pathwasy of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem. 2008, 15: 488-498. 10.2174/092986708783503203.CrossRefPubMed
3.
go back to reference Buchman AL, Sohel M, Brown M, Jenden DJ, Ahn C, Roch M, Brawley TL: Verbal and visual memory improve after choline supplementation in long-term total parenteral nutrition: a pilot study. J Parenter Enteral Nutr. 2001, 25: 30-35. 10.1177/014860710102500130.CrossRef Buchman AL, Sohel M, Brown M, Jenden DJ, Ahn C, Roch M, Brawley TL: Verbal and visual memory improve after choline supplementation in long-term total parenteral nutrition: a pilot study. J Parenter Enteral Nutr. 2001, 25: 30-35. 10.1177/014860710102500130.CrossRef
4.
go back to reference Canal N, Franceschi M, Alberoni M, Castiglioni C, De Moliner P, Longoni A: Effect of L-alpha-glyceryl-phoshorylcholine on amnesia caused by scopolamine. Int J Clin Pharmacol Ther Toxicol. 1991, 29: 103-107.PubMed Canal N, Franceschi M, Alberoni M, Castiglioni C, De Moliner P, Longoni A: Effect of L-alpha-glyceryl-phoshorylcholine on amnesia caused by scopolamine. Int J Clin Pharmacol Ther Toxicol. 1991, 29: 103-107.PubMed
5.
go back to reference DiPerri R, Coppola G, Ambrosio LA, Grasso A, Puca FM, Rizzo M: A multicentre trial to evaluate the efficacy and tolerability of alpha-glycerylphosphorylcholine versus cystosine diphosphocholine in patients with vascular dementia. J Int Med Res. 1991, 19: 330-341. DiPerri R, Coppola G, Ambrosio LA, Grasso A, Puca FM, Rizzo M: A multicentre trial to evaluate the efficacy and tolerability of alpha-glycerylphosphorylcholine versus cystosine diphosphocholine in patients with vascular dementia. J Int Med Res. 1991, 19: 330-341.
6.
go back to reference Gossell-Williams M, Simon O, Young L, West M: Choline supplementation facilitates short-term memory consolidation into intermediate long-term memory of young Sprague-Dawley rats. West Indian Med J. 2006, 55: 4-8.PubMed Gossell-Williams M, Simon O, Young L, West M: Choline supplementation facilitates short-term memory consolidation into intermediate long-term memory of young Sprague-Dawley rats. West Indian Med J. 2006, 55: 4-8.PubMed
7.
go back to reference Conlay LA, Wurtman RJ, Blusztajn JK, Coviella ILG, Maher TJ, Evoniuk GE: Decreased plasma choline concentrations in marathon runners. N Engl J Med. 1986, 315: 892-PubMed Conlay LA, Wurtman RJ, Blusztajn JK, Coviella ILG, Maher TJ, Evoniuk GE: Decreased plasma choline concentrations in marathon runners. N Engl J Med. 1986, 315: 892-PubMed
8.
go back to reference Penry JT, Manore MM: Choline: an important micronutrient for maximal endurance-exercise performance?. Int J Sport Nutr Exerc Metab. 2008, 18: 191-203.PubMed Penry JT, Manore MM: Choline: an important micronutrient for maximal endurance-exercise performance?. Int J Sport Nutr Exerc Metab. 2008, 18: 191-203.PubMed
9.
go back to reference Deuster PA, Singh A, Coll R, Hyde DE, Becker WJ: Choline ingestion does not modify physical or cognitive performance. Mil Med. 2002, 167: 1020-1025.PubMed Deuster PA, Singh A, Coll R, Hyde DE, Becker WJ: Choline ingestion does not modify physical or cognitive performance. Mil Med. 2002, 167: 1020-1025.PubMed
10.
go back to reference Warber JP, Patton JF, Tharion WJ, Zeisel SH, Mello RP, Kemnitz CP, Lieberman HR: The effects of choline supplementation on physical performance. Int J Sport Nutr Exerc Metab. 2000, 10: 170-181.PubMed Warber JP, Patton JF, Tharion WJ, Zeisel SH, Mello RP, Kemnitz CP, Lieberman HR: The effects of choline supplementation on physical performance. Int J Sport Nutr Exerc Metab. 2000, 10: 170-181.PubMed
11.
go back to reference Hirsch MJ, Growdon JH, Wurtman RJ: Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism. 1978, 27: 953-960. 10.1016/0026-0495(78)90139-7.CrossRefPubMed Hirsch MJ, Growdon JH, Wurtman RJ: Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indices. Metabolism. 1978, 27: 953-960. 10.1016/0026-0495(78)90139-7.CrossRefPubMed
12.
go back to reference Wurtman RJ, Hirsch MJ, Growdon JH: Lecithin consumption raises serum-free-choline levels. Lancet. 1977, 2: 68-69. 10.1016/S0140-6736(77)90067-8.CrossRefPubMed Wurtman RJ, Hirsch MJ, Growdon JH: Lecithin consumption raises serum-free-choline levels. Lancet. 1977, 2: 68-69. 10.1016/S0140-6736(77)90067-8.CrossRefPubMed
13.
go back to reference Ziegenfuss T, Landis J, Hofheins J: Acute supplementation with alpha-glycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. J Int Soc Sports Nutr. 2008, 5 (Suppl 1): P15-10.1186/1550-2783-5-S1-P15.PubMedCentralCrossRef Ziegenfuss T, Landis J, Hofheins J: Acute supplementation with alpha-glycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. J Int Soc Sports Nutr. 2008, 5 (Suppl 1): P15-10.1186/1550-2783-5-S1-P15.PubMedCentralCrossRef
14.
go back to reference Blokland A, Honig W, Browns F, Jolles J: Cognition-enhancing properties of subchronic phosphatidylserine (ps) treatment in middle-aged rats: comparision of bovine cortex ps with eggs ps and soybean ps. Nutrition. 1999, 15: 778-783. 10.1016/S0899-9007(99)00157-4.CrossRefPubMed Blokland A, Honig W, Browns F, Jolles J: Cognition-enhancing properties of subchronic phosphatidylserine (ps) treatment in middle-aged rats: comparision of bovine cortex ps with eggs ps and soybean ps. Nutrition. 1999, 15: 778-783. 10.1016/S0899-9007(99)00157-4.CrossRefPubMed
15.
go back to reference Starks MA, Starks SL, Kingsley M, Purpura M, Jäger R: The effects of phosphotidylserine on endocrine response to moderate intensity exercise. J Inter Soc Sports Nutr. 2008, 5: 11-10.1186/1550-2783-5-11.CrossRef Starks MA, Starks SL, Kingsley M, Purpura M, Jäger R: The effects of phosphotidylserine on endocrine response to moderate intensity exercise. J Inter Soc Sports Nutr. 2008, 5: 11-10.1186/1550-2783-5-11.CrossRef
16.
go back to reference Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes tgf-β1 secretion and the resolution of inflammation. J Clin Invest. 2002, 109: 41-50.PubMedCentralCrossRefPubMed Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes tgf-β1 secretion and the resolution of inflammation. J Clin Invest. 2002, 109: 41-50.PubMedCentralCrossRefPubMed
17.
go back to reference Monteleone P, Beinat L, Tanzillo C, Maj M, Kemall D: Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology. 1990, 52: 243-248. 10.1159/000125593.CrossRefPubMed Monteleone P, Beinat L, Tanzillo C, Maj M, Kemall D: Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology. 1990, 52: 243-248. 10.1159/000125593.CrossRefPubMed
18.
go back to reference Dacaranhe CD, Terao J: A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers. Lipids. 2001, 36: 1105-1110. 10.1007/s11745-001-0820-7.CrossRefPubMed Dacaranhe CD, Terao J: A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers. Lipids. 2001, 36: 1105-1110. 10.1007/s11745-001-0820-7.CrossRefPubMed
19.
go back to reference Lactorraca S, Piersanti P, Tesco G, Piacentini S, Amaducci L, Sorbi S: Effect of phosphatidylserine on free radical susceptibility in human diploid fibroblasts. J Neural Transm Park Dis Dement Sect. 1993, 6: 73-77. 10.1007/BF02252625.CrossRef Lactorraca S, Piersanti P, Tesco G, Piacentini S, Amaducci L, Sorbi S: Effect of phosphatidylserine on free radical susceptibility in human diploid fibroblasts. J Neural Transm Park Dis Dement Sect. 1993, 6: 73-77. 10.1007/BF02252625.CrossRef
20.
go back to reference Kingsley M, Wadsworth D, Kilduff LP, McEneny J, Benton D: Effects of phosphatidylserine on oxidative stress following intermittent running. Med Sci Sports Exerc. 2005, 37: 1300-1306. 10.1249/01.mss.0000175306.05465.7e.CrossRefPubMed Kingsley M, Wadsworth D, Kilduff LP, McEneny J, Benton D: Effects of phosphatidylserine on oxidative stress following intermittent running. Med Sci Sports Exerc. 2005, 37: 1300-1306. 10.1249/01.mss.0000175306.05465.7e.CrossRefPubMed
21.
go back to reference Kingsley M, Miller M, Kilduff LP, McEneny J, Benton D: Effects of phosphatidylserine on exercise capacity during cycling in active males. Med Sci Sports Exerc. 2006, 38: 64-71. 10.1249/01.mss.0000183195.10867.d0.CrossRefPubMed Kingsley M, Miller M, Kilduff LP, McEneny J, Benton D: Effects of phosphatidylserine on exercise capacity during cycling in active males. Med Sci Sports Exerc. 2006, 38: 64-71. 10.1249/01.mss.0000183195.10867.d0.CrossRefPubMed
22.
go back to reference Kingsley M, Kilduff LP, McEneny J, Dietzig R, Benton D: Phosphatidylserine supplementation and recovery following downhill running. Med Sci Sports Exerc. 2006, 38: 1617-1625. 10.1249/01.mss.0000183195.10867.d0.CrossRefPubMed Kingsley M, Kilduff LP, McEneny J, Dietzig R, Benton D: Phosphatidylserine supplementation and recovery following downhill running. Med Sci Sports Exerc. 2006, 38: 1617-1625. 10.1249/01.mss.0000183195.10867.d0.CrossRefPubMed
23.
go back to reference Lee KA, Hicks G, Nino-Murcia G: Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36: 291-298. 10.1016/0165-1781(91)90027-M.CrossRefPubMed Lee KA, Hicks G, Nino-Murcia G: Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36: 291-298. 10.1016/0165-1781(91)90027-M.CrossRefPubMed
24.
go back to reference Haubrich DR, Wang PFL, Clody DE, Wedeking PW: Increase in rat brain acetylcholine induced by choline or deanol. Life Sci. 1975, 17: 975-980. 10.1016/0024-3205(75)90451-8.CrossRefPubMed Haubrich DR, Wang PFL, Clody DE, Wedeking PW: Increase in rat brain acetylcholine induced by choline or deanol. Life Sci. 1975, 17: 975-980. 10.1016/0024-3205(75)90451-8.CrossRefPubMed
25.
go back to reference Trammer BA, Schmidt DE, Wecker L: Exogenous choline enhances the synthesis of acetylcholine only under conditions of increased cholinergic neuronal activity. J Neurochem. 1982, 39: 1704-1709. 10.1111/j.1471-4159.1982.tb08006.x.CrossRef Trammer BA, Schmidt DE, Wecker L: Exogenous choline enhances the synthesis of acetylcholine only under conditions of increased cholinergic neuronal activity. J Neurochem. 1982, 39: 1704-1709. 10.1111/j.1471-4159.1982.tb08006.x.CrossRef
26.
go back to reference Spector SA, Jackman MR, Sabounjian LA, Sakkas C, Landers DM, Willis WT: Effect of choline supplementation on fatigue in trained cyclists. Med Sci Sports Exerc. 1995, 27: 668-673.CrossRefPubMed Spector SA, Jackman MR, Sabounjian LA, Sakkas C, Landers DM, Willis WT: Effect of choline supplementation on fatigue in trained cyclists. Med Sci Sports Exerc. 1995, 27: 668-673.CrossRefPubMed
27.
go back to reference Conlay LA, Sabounjian LA, Wurtman RJ: Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med. 1992, 13: S141-S142. 10.1055/s-2007-1024619.CrossRefPubMed Conlay LA, Sabounjian LA, Wurtman RJ: Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med. 1992, 13: S141-S142. 10.1055/s-2007-1024619.CrossRefPubMed
28.
go back to reference Van Allworden HN, Horn S, Kahl J, Feldheim W: The influence of lecithin on plasma choline concentrations in triathletes and adolescent runners during exercise. Eur J Appl Physiol. 1993, 67: 87-91. 10.1007/BF00377711.CrossRef Van Allworden HN, Horn S, Kahl J, Feldheim W: The influence of lecithin on plasma choline concentrations in triathletes and adolescent runners during exercise. Eur J Appl Physiol. 1993, 67: 87-91. 10.1007/BF00377711.CrossRef
29.
go back to reference Moreno MDJM: Cognitive improvement in mild to moderate alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 2003, 25: 178-193. 10.1016/S0149-2918(03)90023-3.CrossRef Moreno MDJM: Cognitive improvement in mild to moderate alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 2003, 25: 178-193. 10.1016/S0149-2918(03)90023-3.CrossRef
30.
go back to reference Benton D, Donohoe RT, Silance B, Nabb S: The influence of phosphatidylserine supplementation on mood and heart rate when faced with an acute stressor. Nutr Neurosci. 2001, 4: 169-178.PubMed Benton D, Donohoe RT, Silance B, Nabb S: The influence of phosphatidylserine supplementation on mood and heart rate when faced with an acute stressor. Nutr Neurosci. 2001, 4: 169-178.PubMed
31.
go back to reference Jäger R, Purpura M, Geiss KR, Weiß M, Baumeister J, Amatulli F, Schröder L, Herwegen H: The effect of phosphatidylserine on golf performance. J Int Soc Sports Nutr. 2007, 4: 23-PubMedCentralCrossRefPubMed Jäger R, Purpura M, Geiss KR, Weiß M, Baumeister J, Amatulli F, Schröder L, Herwegen H: The effect of phosphatidylserine on golf performance. J Int Soc Sports Nutr. 2007, 4: 23-PubMedCentralCrossRefPubMed
32.
go back to reference Kraemer WJ, Volek JS, French DN, Rubin MR, Sharman MJ, Gómez AL, Ratamess NA, Newton RU, Jemiolo B, Craig BW, Häkkinen K: The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 2003, 17: 455-462.PubMed Kraemer WJ, Volek JS, French DN, Rubin MR, Sharman MJ, Gómez AL, Ratamess NA, Newton RU, Jemiolo B, Craig BW, Häkkinen K: The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 2003, 17: 455-462.PubMed
33.
go back to reference Volek JS, Kraemer WJ, Rubin MR, Gómez AL, Ratamess NA, Gaynor P: L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002, 282: E474-482.CrossRefPubMed Volek JS, Kraemer WJ, Rubin MR, Gómez AL, Ratamess NA, Gaynor P: L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002, 282: E474-482.CrossRefPubMed
34.
go back to reference Hoffman JR: Caffeine and Energy Drinks. Strength and Cond J. 2010, 12: 15-20. 10.1519/SSC.0b013e3181bdafa0.CrossRef Hoffman JR: Caffeine and Energy Drinks. Strength and Cond J. 2010, 12: 15-20. 10.1519/SSC.0b013e3181bdafa0.CrossRef
35.
go back to reference Sachan DS, Hongu N: Increases in VO2max and metabolic markers of fat oxidation by caffeine, carnitine, and choline supplementation in rats. J Nutr Biochem. 2000, 11: 521-526. 10.1016/S0955-2863(00)00119-4.CrossRefPubMed Sachan DS, Hongu N: Increases in VO2max and metabolic markers of fat oxidation by caffeine, carnitine, and choline supplementation in rats. J Nutr Biochem. 2000, 11: 521-526. 10.1016/S0955-2863(00)00119-4.CrossRefPubMed
36.
go back to reference Suchy J, Chan A, Shea TB: Dietary supplementation with a combination of α-lipoic acid, acetyl-L-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr Res. 2009, 29: 70-74. 10.1016/j.nutres.2008.11.004.CrossRefPubMed Suchy J, Chan A, Shea TB: Dietary supplementation with a combination of α-lipoic acid, acetyl-L-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr Res. 2009, 29: 70-74. 10.1016/j.nutres.2008.11.004.CrossRefPubMed
37.
go back to reference Kidd PM: Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev. 2005, 10: 268-293.PubMed Kidd PM: Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev. 2005, 10: 268-293.PubMed
38.
go back to reference Dhitavat S, Ortiz D, Shea TB, Rivera ER: Acetyl-L-carnitine protects against amyloid-beta neurotoxicity: roles of oxidative buffering and ATP levels. Neurochem Res. 2002, 27: 501-505. 10.1023/A:1019800703683.CrossRefPubMed Dhitavat S, Ortiz D, Shea TB, Rivera ER: Acetyl-L-carnitine protects against amyloid-beta neurotoxicity: roles of oxidative buffering and ATP levels. Neurochem Res. 2002, 27: 501-505. 10.1023/A:1019800703683.CrossRefPubMed
Metadata
Title
The effects of acute and prolonged CRAM supplementation on reaction time and subjective measures of focus and alertness in healthy college students
Authors
Jay R Hoffman
Nicholas A Ratamess
Adam Gonzalez
Noah A Beller
Mattan W Hoffman
Mark Olson
Martin Purpura
Ralf Jäger
Publication date
01-12-2010
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-7-39

Other articles of this Issue 1/2010

Journal of the International Society of Sports Nutrition 1/2010 Go to the issue