Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2014

Open Access 01-12-2014 | Research

Cardiac gating calibration by the Septal Scout for magnetic resonance coronary angiography

Authors: Garry Liu, Graham A Wright

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2014

Login to get access

Abstract

Background

Electrocardiogram (ECG) gating is commonly used to synchronize imaging windows to diastasis periods over multiple heartbeats in magnetic resonance (MR) coronary angiography. Calibration of the ECG gating parameters is typically based on a cine cardiovascular MR (CMR) video of the beating heart. Insufficient temporal resolution in the cine-CMR method, however, may produce gating errors and motion artifacts.
It was previously shown that tissue Doppler echocardiography (TDE) can identify accurate diastasis window timings by observing the movement of the interventricular septum (IVS). We present a new CMR technique, the Septal Scout, for measuring IVS motion. We demonstrate that cardiac gating windows determined by the Septal Scout produce sharper coronary MR angiography images than windows determined by cine-CMR.

Methods

9 healthy volunteers were scanned on a GE Optima 450w 1.5T MR system. Cine-CMR was acquired and used to identify the start and end times of the diastasis window (Wcine).
The Septal Scout employs a one-dimensional steady-state free precession (SSFP) readout along the ventricular septum prescribed from the 4-chamber view. The Septal Scout data is processed to produce a septal velocity function, from which the diastasis window was determined (Wsep).
Non-contrast-enhanced MR angiography was performed twice for each volunteer: once gated to Wcine, once to Wsep. Vessel sharpness was assessed subjectively by two experienced observers, and quantitatively by full width half maximum (FWHM) measurements of cross-sectional vessel profiles.
In addition, TDE was performed on a subcohort of 6 volunteers where diastasis windows (WTDE) were determined from the IVS velocity measured in the 4-chamber view. W sep and W TDE were compared using Pearson’s correlation.

Results

MRA acquisitions were successful in all volunteers. Vessel segments produced smaller FWHM measurements and were deemed sharper when imaged during the Septal Scout gating windows (p < 0.05). Subjective assessment of sharpness also improved for the Septal Scout-gated scans (p < 0.01 for both observers). Lastly, W sep and W TDE were highly correlated (R > 0.98, p < 0.001).

Conclusions

The MR Septal Scout technique was introduced and demonstrated to be more accurate at determining cardiac gating windows than cine-CMR, yielding sharper coronary MR angiography images.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stathopoulos I, Jimenez M, Panagopoulos G: The decline in PCI complication rate: 2003–2006 versus 1999–2002. Hellenic J Cardiol. 2009, 50: 379-87.PubMed Stathopoulos I, Jimenez M, Panagopoulos G: The decline in PCI complication rate: 2003–2006 versus 1999–2002. Hellenic J Cardiol. 2009, 50: 379-87.PubMed
2.
go back to reference Ammann P, La Rocca HB: Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size - Ammann - 2003 - Catheterization and Cardiovascular Interventions - Wiley Online Library. Cathet Cardiovasc Interv. 2003, 59: 13-8. 10.1002/ccd.10489.CrossRef Ammann P, La Rocca HB: Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size - Ammann - 2003 - Catheterization and Cardiovascular Interventions - Wiley Online Library. Cathet Cardiovasc Interv. 2003, 59: 13-8. 10.1002/ccd.10489.CrossRef
3.
go back to reference Kaufmann PA, Knuuti J: Ionizing radiation risks of cardiac imaging: estimates of the immeasurable. Eur Heart J. 2011, 32: 269-71. 10.1093/eurheartj/ehq298.CrossRefPubMed Kaufmann PA, Knuuti J: Ionizing radiation risks of cardiac imaging: estimates of the immeasurable. Eur Heart J. 2011, 32: 269-71. 10.1093/eurheartj/ehq298.CrossRefPubMed
4.
go back to reference Johnson K, Patel S, Whigham A, Hakim A, Pettigrew R, Oshinski J: Three? Dimensional, time? Resolved motion of the coronary arteries. J Cardiovasc Magn Reson. 2004, 6: 663-73. 10.1081/JCMR-120038086.CrossRefPubMed Johnson K, Patel S, Whigham A, Hakim A, Pettigrew R, Oshinski J: Three? Dimensional, time? Resolved motion of the coronary arteries. J Cardiovasc Magn Reson. 2004, 6: 663-73. 10.1081/JCMR-120038086.CrossRefPubMed
5.
go back to reference Shechter G, Resar JR, McVeigh ER: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans Med Imaging. 2006, 25: 369-75.PubMedCentralCrossRefPubMed Shechter G, Resar JR, McVeigh ER: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans Med Imaging. 2006, 25: 369-75.PubMedCentralCrossRefPubMed
6.
go back to reference Wang Y, Vidan E, Bergman GW: Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR Angiography1. Radiology. 1999, 213: 751-8. 10.1148/radiology.213.3.r99dc41751.CrossRefPubMed Wang Y, Vidan E, Bergman GW: Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR Angiography1. Radiology. 1999, 213: 751-8. 10.1148/radiology.213.3.r99dc41751.CrossRefPubMed
7.
go back to reference Shechter G, Resar JR, Mcveigh ER: Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography. Med Phys. 2005, 32: 255-10.1118/1.1836291.PubMedCentralCrossRefPubMed Shechter G, Resar JR, Mcveigh ER: Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography. Med Phys. 2005, 32: 255-10.1118/1.1836291.PubMedCentralCrossRefPubMed
8.
go back to reference Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E: A new approach for rapid assessment of the cardiac rest period for coronary MRA. J Cardiovasc Magn Reson. 2005, 7: 395-9. 10.1081/JCMR-200053616.CrossRefPubMed Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E: A new approach for rapid assessment of the cardiac rest period for coronary MRA. J Cardiovasc Magn Reson. 2005, 7: 395-9. 10.1081/JCMR-200053616.CrossRefPubMed
9.
go back to reference Liu GKC, Qi X-L, Robert N, Dick AJ, Wright GA: Ultrasound-guided identification of cardiac imaging windows. Med Phys. 2012, 39: 3009-18. 10.1118/1.4711757.CrossRefPubMed Liu GKC, Qi X-L, Robert N, Dick AJ, Wright GA: Ultrasound-guided identification of cardiac imaging windows. Med Phys. 2012, 39: 3009-18. 10.1118/1.4711757.CrossRefPubMed
10.
go back to reference Beauchemin SS, Barron JL: The computation of optical flow. ACM Comput Surv. 1995, 27: 433-66. 10.1145/212094.212141.CrossRef Beauchemin SS, Barron JL: The computation of optical flow. ACM Comput Surv. 1995, 27: 433-66. 10.1145/212094.212141.CrossRef
11.
go back to reference Hardy CJ, Cline HE: Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys. 1989, 66: 1513-10.1063/1.344411.CrossRef Hardy CJ, Cline HE: Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys. 1989, 66: 1513-10.1063/1.344411.CrossRef
12.
go back to reference Pauly J, Nishimura D, Macovski A: A k-space analysis of small-tip-angle excitation. J Magn Reson (1969). 1989, 81: 43-56. 10.1016/0022-2364(89)90265-5.CrossRef Pauly J, Nishimura D, Macovski A: A k-space analysis of small-tip-angle excitation. J Magn Reson (1969). 1989, 81: 43-56. 10.1016/0022-2364(89)90265-5.CrossRef
13.
go back to reference Jahnke C, Paetsch I, Achenbach S, Schnackenburg B: Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and β-blocker Use. Radiology. 2006, 239: 71-8. 10.1148/radiol.2383042019.CrossRefPubMed Jahnke C, Paetsch I, Achenbach S, Schnackenburg B: Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and β-blocker Use. Radiology. 2006, 239: 71-8. 10.1148/radiol.2383042019.CrossRefPubMed
14.
go back to reference Bernstein MA, King KF, Zhou XJ: Handbook of MRI Pulse Sequences. 2004, Massachusetts, USA: Elsevier Academic Press Bernstein MA, King KF, Zhou XJ: Handbook of MRI Pulse Sequences. 2004, Massachusetts, USA: Elsevier Academic Press
15.
go back to reference Stuber M, Botnar R, Danias P, Kissinger K: Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology. 1999, 212: 579-87. 10.1148/radiology.212.2.r99au50579.CrossRefPubMed Stuber M, Botnar R, Danias P, Kissinger K: Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology. 1999, 212: 579-87. 10.1148/radiology.212.2.r99au50579.CrossRefPubMed
16.
go back to reference Wang Y, Watts R, Mitchell I, Nguyen T: Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning—initial results1. Radiology. 2001, 218: 580-5. 10.1148/radiology.218.2.r01fe46580.CrossRefPubMed Wang Y, Watts R, Mitchell I, Nguyen T: Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning—initial results1. Radiology. 2001, 218: 580-5. 10.1148/radiology.218.2.r01fe46580.CrossRefPubMed
17.
go back to reference Walker CM, Chung JH, Reddy GP: Septal bounce. J Thorac Imaging. 2012, 27: W1-10.1097/RTI.0b013e31823fdfbd.CrossRefPubMed Walker CM, Chung JH, Reddy GP: Septal bounce. J Thorac Imaging. 2012, 27: W1-10.1097/RTI.0b013e31823fdfbd.CrossRefPubMed
18.
go back to reference Martin V, Drochon A, Fokapu O, Gerbeau J-F: MagnetoHemoDynamics in the aorta and electrocardiograms. Phys Med Biol. 2012, 57: 3177-95. 10.1088/0031-9155/57/10/3177.CrossRefPubMed Martin V, Drochon A, Fokapu O, Gerbeau J-F: MagnetoHemoDynamics in the aorta and electrocardiograms. Phys Med Biol. 2012, 57: 3177-95. 10.1088/0031-9155/57/10/3177.CrossRefPubMed
Metadata
Title
Cardiac gating calibration by the Septal Scout for magnetic resonance coronary angiography
Authors
Garry Liu
Graham A Wright
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2014
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-16-12

Other articles of this Issue 1/2014

Journal of Cardiovascular Magnetic Resonance 1/2014 Go to the issue