Skip to main content
Top
Published in: Journal of Translational Medicine 1/2011

Open Access 01-12-2011 | Research

Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines

Authors: Melissa G Lechner, Carolina Megiel, Sarah M Russell, Brigid Bingham, Nicholas Arger, Tammy Woo, Alan L Epstein

Published in: Journal of Translational Medicine | Issue 1/2011

Login to get access

Abstract

Background

Tumor immune tolerance can derive from the recruitment of suppressor cell populations, including myeloid-derived suppressor cells (MDSC). In cancer patients, MDSC accumulation correlates with increased tumor burden, but the mechanisms of MDSC induction remain poorly understood.

Methods

This study examined the ability of human tumor cell lines to induce MDSC from healthy donor PBMC using in vitro co-culture methods. These human MDSC were then characterized for morphology, phenotype, gene expression, and function.

Results

Of over 100 tumor cell lines examined, 45 generated canonical CD33+HLA-DRlowLineage- MDSC, with high frequency of induction by cervical, ovarian, colorectal, renal cell, and head and neck carcinoma cell lines. CD33+ MDSC could be induced by cancer cell lines from all tumor types with the notable exception of those derived from breast cancer (0/9, regardless of hormone and HER2 status). Upon further examination, these and others with infrequent CD33+ MDSC generation were found to induce a second subset characterized as CD11b+CD33lowHLA-DRlowLineage-. Gene and protein expression, antibody neutralization, and cytokine-induction studies determined that the induction of CD33+ MDSC depended upon over-expression of IL-1β, IL-6, TNFα, VEGF, and GM-CSF, while CD11b+ MDSC induction correlated with over-expression of FLT3L and TGFβ. Morphologically, both CD33+ and CD11b+ MDSC subsets appeared as immature myeloid cells and had significantly up-regulated expression of iNOS, NADPH oxidase, and arginase-1 genes. Furthermore, increased expression of transcription factors HIF1α, STAT3, and C/EBPβ distinguished MDSC from normal counterparts.

Conclusions

These studies demonstrate the universal nature of MDSC induction by human solid tumors and characterize two distinct MDSC subsets: CD33+HLA-DRlowHIF1α+/STAT3+ and CD11b+HLA-DRlowC/EBPβ+, which should enable the development of novel diagnostic and therapeutic reagents for cancer immunotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stewart TJ, Smyth MJ: Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Reviews. 2011, 30: 125-140. 10.1007/s10555-011-9280-5.CrossRefPubMed Stewart TJ, Smyth MJ: Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Reviews. 2011, 30: 125-140. 10.1007/s10555-011-9280-5.CrossRefPubMed
2.
go back to reference Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010, 22: 238-244. 10.1016/j.coi.2010.01.021.CrossRefPubMed Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010, 22: 238-244. 10.1016/j.coi.2010.01.021.CrossRefPubMed
3.
go back to reference Youn JI, Nagaraj S, Collazo M, Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology. 2008, 181: 5791-5802.CrossRef Youn JI, Nagaraj S, Collazo M, Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology. 2008, 181: 5791-5802.CrossRef
4.
go back to reference Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111: 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111: 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed
5.
go back to reference Condamine T, Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in Immunology. 2011, 32: 19-25. 10.1016/j.it.2010.10.002.PubMedCentralCrossRefPubMed Condamine T, Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in Immunology. 2011, 32: 19-25. 10.1016/j.it.2010.10.002.PubMedCentralCrossRefPubMed
6.
7.
go back to reference Bak SP, Alonso A, Turk MJ, Berwin B: Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol. 2008, 46: 258-268. 10.1016/j.molimm.2008.08.266.PubMedCentralCrossRefPubMed Bak SP, Alonso A, Turk MJ, Berwin B: Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol. 2008, 46: 258-268. 10.1016/j.molimm.2008.08.266.PubMedCentralCrossRefPubMed
8.
go back to reference Nagaraj S, Gabrilovich DI: Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008, 68: 2561-2563. 10.1158/0008-5472.CAN-07-6229.CrossRefPubMed Nagaraj S, Gabrilovich DI: Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008, 68: 2561-2563. 10.1158/0008-5472.CAN-07-6229.CrossRefPubMed
9.
go back to reference Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009, 182: 5693-5701. 10.4049/jimmunol.0900092.PubMedCentralCrossRefPubMed Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009, 182: 5693-5701. 10.4049/jimmunol.0900092.PubMedCentralCrossRefPubMed
10.
go back to reference Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC, Gulen D, Bishay J, Talmadge JE: Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol. 2009, 9: 937-948. 10.1016/j.intimp.2009.03.021.CrossRefPubMed Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC, Gulen D, Bishay J, Talmadge JE: Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol. 2009, 9: 937-948. 10.1016/j.intimp.2009.03.021.CrossRefPubMed
11.
go back to reference Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010, 70: 68-77. 10.1158/0008-5472.CAN-09-2587.PubMedCentralCrossRefPubMed Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010, 70: 68-77. 10.1158/0008-5472.CAN-09-2587.PubMedCentralCrossRefPubMed
12.
go back to reference Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived suppressor cells promote cross-tolerance in B cell lymphoma by expanding regulatory T cells. Cancer Res. 2008, 68: 5439-5449. 10.1158/0008-5472.CAN-07-6621.PubMedCentralCrossRefPubMed Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived suppressor cells promote cross-tolerance in B cell lymphoma by expanding regulatory T cells. Cancer Res. 2008, 68: 5439-5449. 10.1158/0008-5472.CAN-07-6621.PubMedCentralCrossRefPubMed
13.
go back to reference Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2009, 182: 2795-2807. 10.4049/jimmunol.0712671.CrossRefPubMed Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2009, 182: 2795-2807. 10.4049/jimmunol.0712671.CrossRefPubMed
14.
go back to reference Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI: HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207: 2439-2453. 10.1084/jem.20100587.PubMedCentralCrossRefPubMed Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI: HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207: 2439-2453. 10.1084/jem.20100587.PubMedCentralCrossRefPubMed
16.
go back to reference Lechner MG, Liebertz DJ, Epstein AL: Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010, 185: 2273-2284. 10.4049/jimmunol.1000901.PubMedCentralCrossRefPubMed Lechner MG, Liebertz DJ, Epstein AL: Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010, 185: 2273-2284. 10.4049/jimmunol.1000901.PubMedCentralCrossRefPubMed
17.
go back to reference Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006, 25: 323-331. 10.1007/s10555-006-9002-6.PubMedCentralCrossRefPubMed Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006, 25: 323-331. 10.1007/s10555-006-9002-6.PubMedCentralCrossRefPubMed
18.
go back to reference Serafini P, Borrello I, Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006, 16: 53-65. 10.1016/j.semcancer.2005.07.005.CrossRefPubMed Serafini P, Borrello I, Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006, 16: 53-65. 10.1016/j.semcancer.2005.07.005.CrossRefPubMed
19.
go back to reference Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, Keller G, Chen SH, Pan PY: Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010, 28: 620-632.PubMedCentralCrossRefPubMed Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, Keller G, Chen SH, Pan PY: Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010, 28: 620-632.PubMedCentralCrossRefPubMed
20.
go back to reference Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R: Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010, 70: 4335-4345. 10.1158/0008-5472.CAN-09-3767.CrossRefPubMed Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R: Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010, 70: 4335-4345. 10.1158/0008-5472.CAN-09-3767.CrossRefPubMed
21.
22.
go back to reference Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P: IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009, 182: 6562-6568. 10.4049/jimmunol.0803831.CrossRefPubMed Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P: IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009, 182: 6562-6568. 10.4049/jimmunol.0803831.CrossRefPubMed
23.
go back to reference Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25: 2546-2553. 10.1200/JCO.2006.08.5829.CrossRefPubMed Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25: 2546-2553. 10.1200/JCO.2006.08.5829.CrossRefPubMed
24.
go back to reference Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009, 50: 799-807. 10.1002/hep.23054.CrossRefPubMed Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009, 50: 799-807. 10.1002/hep.23054.CrossRefPubMed
25.
go back to reference Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135: 234-243. 10.1053/j.gastro.2008.03.020.CrossRefPubMed Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135: 234-243. 10.1053/j.gastro.2008.03.020.CrossRefPubMed
26.
go back to reference Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP: Population alterations of L: -arginase- and inducible nitric oxide synthase-expressed CD11b(+)/CD14 (-)/CD15 (+)/CD33 (+) myeloid-derived suppressor cells and CD8 (+) T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2009, 136: 35-45.CrossRef Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP: Population alterations of L: -arginase- and inducible nitric oxide synthase-expressed CD11b(+)/CD14 (-)/CD15 (+)/CD33 (+) myeloid-derived suppressor cells and CD8 (+) T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2009, 136: 35-45.CrossRef
27.
go back to reference Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009, 15: 2148-2157. 10.1158/1078-0432.CCR-08-1332.CrossRefPubMed Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009, 15: 2148-2157. 10.1158/1078-0432.CCR-08-1332.CrossRefPubMed
28.
go back to reference Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O'Neill A, Mier J, Ochoa AC: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005, 65: 3044-3048.PubMed Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O'Neill A, Mier J, Ochoa AC: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005, 65: 3044-3048.PubMed
29.
go back to reference Morse MA, Hall JR, Plate JM: Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer. Expert Opin Biol Ther. 2009, 9: 331-339. 10.1517/14712590802715756.CrossRefPubMed Morse MA, Hall JR, Plate JM: Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer. Expert Opin Biol Ther. 2009, 9: 331-339. 10.1517/14712590802715756.CrossRefPubMed
30.
go back to reference Gordon IO, Freedman RS: Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006, 12: 1515-1524. 10.1158/1078-0432.CCR-05-2254.CrossRefPubMed Gordon IO, Freedman RS: Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006, 12: 1515-1524. 10.1158/1078-0432.CCR-05-2254.CrossRefPubMed
31.
go back to reference Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009, 58: 49-59. 10.1007/s00262-008-0523-4.PubMedCentralCrossRefPubMed Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009, 58: 49-59. 10.1007/s00262-008-0523-4.PubMedCentralCrossRefPubMed
32.
go back to reference Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM: Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR-/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010, 72: 540-547. 10.1111/j.1365-3083.2010.02463.x.CrossRefPubMed Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM: Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR-/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010, 72: 540-547. 10.1111/j.1365-3083.2010.02463.x.CrossRefPubMed
33.
go back to reference Sadun RE, Sachsman SM, Chen X, Christenson KW, Morris WZ, Hu P, Epstein AL: Immune signatures of murine and human cancers reveal unique mechanisms of tumor escape and new targets for cancer immunotherapy. Clin Cancer Res. 2007, 13: 4016-4025. 10.1158/1078-0432.CCR-07-0016.CrossRefPubMed Sadun RE, Sachsman SM, Chen X, Christenson KW, Morris WZ, Hu P, Epstein AL: Immune signatures of murine and human cancers reveal unique mechanisms of tumor escape and new targets for cancer immunotherapy. Clin Cancer Res. 2007, 13: 4016-4025. 10.1158/1078-0432.CCR-07-0016.CrossRefPubMed
34.
go back to reference Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research. 2007, 67: 11021-11028. 10.1158/0008-5472.CAN-07-2593.CrossRefPubMed Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research. 2007, 67: 11021-11028. 10.1158/0008-5472.CAN-07-2593.CrossRefPubMed
35.
go back to reference de Kleer I, Vercoulen Y, Klein M, Meerding J, Albani S, van der Zee R, Sawitzki B, Hamann A, Kuis W, Prakken B: CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J Immunol. 2010, 185: 2071-2079. 10.4049/jimmunol.0901901.CrossRefPubMed de Kleer I, Vercoulen Y, Klein M, Meerding J, Albani S, van der Zee R, Sawitzki B, Hamann A, Kuis W, Prakken B: CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J Immunol. 2010, 185: 2071-2079. 10.4049/jimmunol.0901901.CrossRefPubMed
36.
go back to reference del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R: Development and functional specialization of CD103+ dendritic cells. Immunol Rev. 2010, 234: 268-281. 10.1111/j.0105-2896.2009.00874.x.CrossRefPubMed del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R: Development and functional specialization of CD103+ dendritic cells. Immunol Rev. 2010, 234: 268-281. 10.1111/j.0105-2896.2009.00874.x.CrossRefPubMed
37.
go back to reference Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Research. 2009, 69: 1553-1560. 10.1158/0008-5472.CAN-08-1921.PubMedCentralCrossRefPubMed Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Research. 2009, 69: 1553-1560. 10.1158/0008-5472.CAN-08-1921.PubMedCentralCrossRefPubMed
38.
go back to reference Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V: Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010, 32: 790-802. 10.1016/j.immuni.2010.05.010.CrossRefPubMed Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V: Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010, 32: 790-802. 10.1016/j.immuni.2010.05.010.CrossRefPubMed
39.
go back to reference Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010, 3526-3536. 70 Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010, 3526-3536. 70
40.
go back to reference Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S: Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. Journal of Leukocyte Biology. 2009, 85: 996-1004. 10.1189/jlb.0708446.PubMedCentralCrossRefPubMed Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S: Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. Journal of Leukocyte Biology. 2009, 85: 996-1004. 10.1189/jlb.0708446.PubMedCentralCrossRefPubMed
41.
go back to reference Lechner MG, Epstein AL: A new mechanism for blocking myeloid-derived suppressor cells by CpG. Clin Cancer Res. 2011, 17: 1645-1648. 10.1158/1078-0432.CCR-11-0024.PubMedCentralCrossRefPubMed Lechner MG, Epstein AL: A new mechanism for blocking myeloid-derived suppressor cells by CpG. Clin Cancer Res. 2011, 17: 1645-1648. 10.1158/1078-0432.CCR-11-0024.PubMedCentralCrossRefPubMed
42.
go back to reference Lin HP: Celecoxib: Its non-COX-2 targets and its anti-cancer effects. PhD Thesis. 2005, Ohio State University, Pharmacy Department Lin HP: Celecoxib: Its non-COX-2 targets and its anti-cancer effects. PhD Thesis. 2005, Ohio State University, Pharmacy Department
43.
go back to reference Adib-Conquy M, Cavaillon JM: Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Letter. 2007, 581: 3723-3733. 10.1016/j.febslet.2007.03.074.CrossRef Adib-Conquy M, Cavaillon JM: Stress molecules in sepsis and systemic inflammatory response syndrome. FEBS Letter. 2007, 581: 3723-3733. 10.1016/j.febslet.2007.03.074.CrossRef
44.
go back to reference Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY: Regulation of HIF-1α Stability through S-nitrosylation. Mol Cell. 2007, 26: 63-74. 10.1016/j.molcel.2007.02.024.PubMedCentralCrossRefPubMed Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY: Regulation of HIF-1α Stability through S-nitrosylation. Mol Cell. 2007, 26: 63-74. 10.1016/j.molcel.2007.02.024.PubMedCentralCrossRefPubMed
45.
go back to reference Kaluz S, Van Meir EG: At the crossroads of cancer and inflammation: Ras rewires an HIF-driven IL-1 autocrine loop. J Mol Med. 2011, 89: 91-94. 10.1007/s00109-010-0706-2.CrossRefPubMed Kaluz S, Van Meir EG: At the crossroads of cancer and inflammation: Ras rewires an HIF-driven IL-1 autocrine loop. J Mol Med. 2011, 89: 91-94. 10.1007/s00109-010-0706-2.CrossRefPubMed
46.
go back to reference Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V: Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol. 2007, 178: 7516-7519.CrossRefPubMed Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V: Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol. 2007, 178: 7516-7519.CrossRefPubMed
47.
48.
go back to reference Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA. 1993, 90: 10193-10197. 10.1073/pnas.90.21.10193.PubMedCentralCrossRefPubMed Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S: Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA. 1993, 90: 10193-10197. 10.1073/pnas.90.21.10193.PubMedCentralCrossRefPubMed
49.
go back to reference Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008, 453: 807-811. 10.1038/nature06905.PubMedCentralCrossRefPubMed Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008, 453: 807-811. 10.1038/nature06905.PubMedCentralCrossRefPubMed
50.
go back to reference Walmsley SR, Chilvers ER, Whyte MK: Hypoxia, hypoxia inducible factor and myeloid cell function. Arthritis Research and Therapy. 2009, 11: 219-225. 10.1186/ar2632.PubMedCentralCrossRefPubMed Walmsley SR, Chilvers ER, Whyte MK: Hypoxia, hypoxia inducible factor and myeloid cell function. Arthritis Research and Therapy. 2009, 11: 219-225. 10.1186/ar2632.PubMedCentralCrossRefPubMed
51.
go back to reference Huang WL, Yeh HH, Lin CC, Lai WW, Chang JY, Chang WT, Su WC: Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer. 2010, 9: 309-10.1186/1476-4598-9-309.PubMedCentralCrossRefPubMed Huang WL, Yeh HH, Lin CC, Lai WW, Chang JY, Chang WT, Su WC: Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer. 2010, 9: 309-10.1186/1476-4598-9-309.PubMedCentralCrossRefPubMed
Metadata
Title
Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines
Authors
Melissa G Lechner
Carolina Megiel
Sarah M Russell
Brigid Bingham
Nicholas Arger
Tammy Woo
Alan L Epstein
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2011
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-9-90

Other articles of this Issue 1/2011

Journal of Translational Medicine 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.