Skip to main content
Top
Published in: Journal of Translational Medicine 1/2011

Open Access 01-12-2011 | Research

Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer

Authors: Richard J Ablin, Howard G Kynaston, Malcolm D Mason, Wen G Jiang

Published in: Journal of Translational Medicine | Issue 1/2011

Login to get access

Abstract

Background

Transglutamiase-4 (TGase-4), also known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland. The functions of this interesting protein are not clearly defined. In the present study, we have investigated an unexpected link between TGase-4 and the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24), a cytokine known to regulate the growth and apoptosis of certain cancer and immune cells.

Methods

Frozen sections of normal and malignant human prostate tissues and human prostate cancer (PCa) cell lines PC-3 and CA-HPV-10, cell lines expressing low and high levels of TGase-4, and recombinant MDA-7/IL-24 (rhMDA-7/IL-24) were used. Expression construct for human TGase-4 was generated using a mammalian expression vector with full length human TGase-4 isolated from normal human prostate tissues. PC-3 cells were transfected with expression construct or control plasmid. Stably transfected cells for control transfection and TGase-4 over expression were created. Similarly, expression of TGase-4 in CA-HPV-10 cells were knocked down by way of ribozyme transgenes. Single and double immunofluorescence microscopy was used for localization and co-localization of TGase-4 and MDA-7/IL-24 in PCa tissues and cells with antibodies to TGase-4; MDA-7/IL-24; IL-20alpha; IL-20beta and IL-22R. Cell-matrix adhesion, attachment and migration were by electric cell substrate impedance sensing and growth by in vitro cell growth assay. A panel of small molecule inhibitors, including Akt, was used to determine signal pathways involving TGase-4 and MDA-7/IL-24.

Results

We initially noted that MDA-7 resulted in inhibition of cell adhesion, growth and migration of human PCa PC-3 cells which did not express TGase-4. However, after the cells over-expressed TGase-4 by way of transfection, the TGase-4 expressing cells lost their adhesion, growth and migratory inhibitory response to MDA-7. On the other hand, CA-HPV-10 cells, a cell type naturally expressing high levels of TGase-4, had a contrasting response to MDA-7 when compared with PC-3 cells. Inhibitor to Akt reversed the inhibitory effect of MDA-7, only in PC-3 control cells, but not the TGase-4 expressing PC-3 cells. In human prostate tissues, TGase-4 was found to have a good degree of co-localization with one of the MDA-7 receptor complexes, IL-20Ra.

Conclusion

The presence of TGase-4 has a biological impact on a prostate cancer cell's response to MDA-7. TGase-4, via mechanism(s) yet to be identified, blocked the action of MDA-7 in prostate cancer cells. This has an important implication when considering the use of MDA-7 as a potential anticancer cytokine in prostate cancer therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Folk JE: Transglutaminases. Annu Rev Biochem. 1980, 49: 517-531. 10.1146/annurev.bi.49.070180.002505.CrossRefPubMed Folk JE: Transglutaminases. Annu Rev Biochem. 1980, 49: 517-531. 10.1146/annurev.bi.49.070180.002505.CrossRefPubMed
2.
go back to reference Chen JSK, Mehta K: Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol. 1999, 31: 817-836. 10.1016/S1357-2725(99)00045-X.CrossRefPubMed Chen JSK, Mehta K: Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol. 1999, 31: 817-836. 10.1016/S1357-2725(99)00045-X.CrossRefPubMed
3.
go back to reference Gentile V, Grant FJ, Porta R, Baldini A: Localization of the human prostate transglutaminase (type IV) gene (transglutaminase-4) to chromosome 3p21.33-p22 by fluorescence in situ hybridization. Genomics. 1995, 27: 219-220. 10.1006/geno.1995.1032.CrossRefPubMed Gentile V, Grant FJ, Porta R, Baldini A: Localization of the human prostate transglutaminase (type IV) gene (transglutaminase-4) to chromosome 3p21.33-p22 by fluorescence in situ hybridization. Genomics. 1995, 27: 219-220. 10.1006/geno.1995.1032.CrossRefPubMed
4.
go back to reference Grant FJ, Taylor DA, Sheppard PO, Mathewes SL, Lint W, Vanaja E, Bishop PD, O'Hara PJ: Molecular cloning and characterization of a novel transglutaminase cDNA from a human prostate cDNA library. Biochem Biophys Res Commun. 1994, 203: 1117-1123. 10.1006/bbrc.1994.2298.CrossRefPubMed Grant FJ, Taylor DA, Sheppard PO, Mathewes SL, Lint W, Vanaja E, Bishop PD, O'Hara PJ: Molecular cloning and characterization of a novel transglutaminase cDNA from a human prostate cDNA library. Biochem Biophys Res Commun. 1994, 203: 1117-1123. 10.1006/bbrc.1994.2298.CrossRefPubMed
5.
go back to reference Dubbink HJ, de Waal L, van Haperen R, Verkaik NS, Trapman J, Romijn JC: The human prostate-specific transglutaminase gene (TGM4): genomic organization, tissue-specific expression, and promoter characterization. Genomics. 1998, 51: 434-44. 10.1006/geno.1998.5393.CrossRefPubMed Dubbink HJ, de Waal L, van Haperen R, Verkaik NS, Trapman J, Romijn JC: The human prostate-specific transglutaminase gene (TGM4): genomic organization, tissue-specific expression, and promoter characterization. Genomics. 1998, 51: 434-44. 10.1006/geno.1998.5393.CrossRefPubMed
6.
go back to reference Dubbink HJ, Hoedemaeker RF, van der Kwast TH, Schroder FH, Romijn JC: Human prostate-specific transglutaminase: a new prostatic marker with a unique distribution pattern. Lab Invest. 1999, 79: 141-150.PubMed Dubbink HJ, Hoedemaeker RF, van der Kwast TH, Schroder FH, Romijn JC: Human prostate-specific transglutaminase: a new prostatic marker with a unique distribution pattern. Lab Invest. 1999, 79: 141-150.PubMed
7.
go back to reference An G, Meka CS, Bright SP, Veltri RW: Human prostate-specific transglutaminase gene: promoter cloning, tissue-specific expression, and down-regulation in metastatic prostate cancer. Urology. 1999, 54: 1105-1111. 10.1016/S0090-4295(99)00298-8.CrossRefPubMed An G, Meka CS, Bright SP, Veltri RW: Human prostate-specific transglutaminase gene: promoter cloning, tissue-specific expression, and down-regulation in metastatic prostate cancer. Urology. 1999, 54: 1105-1111. 10.1016/S0090-4295(99)00298-8.CrossRefPubMed
8.
go back to reference Cho SY, Jeon JH, Kim CW, Shin DM, Jang GY, Jeong EM, Lee SE, Song KY, Kim IG: Monoclonal antibodies to human transglutaminase 4. Hybridoma (Larchmt). 2010, 29: 263-267. 10.1089/hyb.2009.0112.CrossRef Cho SY, Jeon JH, Kim CW, Shin DM, Jang GY, Jeong EM, Lee SE, Song KY, Kim IG: Monoclonal antibodies to human transglutaminase 4. Hybridoma (Larchmt). 2010, 29: 263-267. 10.1089/hyb.2009.0112.CrossRef
9.
go back to reference Ho KC, Quarmby VE, French FS, Wilson EM: Molecular cloning of rat prostate transglutaminase (type IV) gene (transglutaminase-4) to chromosome 3p21.33p22 by fluorescence in situ hybridization. Genomics. 1995, 27: 219-220. 10.1006/geno.1995.1032.CrossRef Ho KC, Quarmby VE, French FS, Wilson EM: Molecular cloning of rat prostate transglutaminase (type IV) gene (transglutaminase-4) to chromosome 3p21.33p22 by fluorescence in situ hybridization. Genomics. 1995, 27: 219-220. 10.1006/geno.1995.1032.CrossRef
10.
go back to reference Williams-Ashman HG: Transglutaminases and the clotting of mammalian seminal fluids. Mol Cell Biochem. 1984, 58: 51-61. 10.1007/BF00240604.CrossRefPubMed Williams-Ashman HG: Transglutaminases and the clotting of mammalian seminal fluids. Mol Cell Biochem. 1984, 58: 51-61. 10.1007/BF00240604.CrossRefPubMed
11.
go back to reference Ablin RJ, Whyard TC: Identification and biological relevance of spermatozoal transglutaminase. Experientia. 1991, 47: 277-279. 10.1007/BF01958159.CrossRefPubMed Ablin RJ, Whyard TC: Identification and biological relevance of spermatozoal transglutaminase. Experientia. 1991, 47: 277-279. 10.1007/BF01958159.CrossRefPubMed
12.
go back to reference Davies G, Ablin RJ, Mason MD, Jiang WG: Expression of the prostate transglutainase (TGase-4) in prostate cancer cells and its impact on the invasiveness of prostate cancer. J Exp Therapeut Oncol. 2007, 6: 257-264. Davies G, Ablin RJ, Mason MD, Jiang WG: Expression of the prostate transglutainase (TGase-4) in prostate cancer cells and its impact on the invasiveness of prostate cancer. J Exp Therapeut Oncol. 2007, 6: 257-264.
13.
go back to reference Jiang WG, Ablin RJ, Kynaston HG, Mason MD: The Prostate Transglutaminase (TGase-4, TGaseP) regulates the interaction of prostate cancer and vascular endothelial cells, a potential role for the ROCK pathway. Microvas Res. 2009, 77: 150-157. 10.1016/j.mvr.2008.09.010.CrossRef Jiang WG, Ablin RJ, Kynaston HG, Mason MD: The Prostate Transglutaminase (TGase-4, TGaseP) regulates the interaction of prostate cancer and vascular endothelial cells, a potential role for the ROCK pathway. Microvas Res. 2009, 77: 150-157. 10.1016/j.mvr.2008.09.010.CrossRef
14.
go back to reference Cho SY, Choi K, Jeon JH, Kim CW, Shin DM, Lee JB, Lee SE, Kim CS, Park JS, Jeong EM, Jang GY, Song KY, Kim IG: Differential alternative splicing of human transglutaminase 4 in benign prostate hyperplasia and prostate cancer. Exp Mol Med. 2010, 42: 310-318. 10.3858/emm.2010.42.4.031.PubMedCentralCrossRefPubMed Cho SY, Choi K, Jeon JH, Kim CW, Shin DM, Lee JB, Lee SE, Kim CS, Park JS, Jeong EM, Jang GY, Song KY, Kim IG: Differential alternative splicing of human transglutaminase 4 in benign prostate hyperplasia and prostate cancer. Exp Mol Med. 2010, 42: 310-318. 10.3858/emm.2010.42.4.031.PubMedCentralCrossRefPubMed
15.
go back to reference Jiang WG, Ablin RJ, Ye L, Kynaston , Mason MD: The prostate transglutaminase, TGase-4, coordinate with the HGFL/MSP-RON system in stimulating the migration of prostate cancer cells. Int J Oncology. 2010, 37: 413-418.CrossRef Jiang WG, Ablin RJ, Ye L, Kynaston , Mason MD: The prostate transglutaminase, TGase-4, coordinate with the HGFL/MSP-RON system in stimulating the migration of prostate cancer cells. Int J Oncology. 2010, 37: 413-418.CrossRef
16.
go back to reference Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB: Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995, 11: 2477-2486.PubMed Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB: Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995, 11: 2477-2486.PubMed
17.
go back to reference Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CSH, Fisher PB: The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Nat Acad Sci USA. 1996, 93: 9160-9165. 10.1073/pnas.93.17.9160.PubMedCentralCrossRefPubMed Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CSH, Fisher PB: The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Nat Acad Sci USA. 1996, 93: 9160-9165. 10.1073/pnas.93.17.9160.PubMedCentralCrossRefPubMed
18.
go back to reference Lebedeva IV, Sarkar D, Su ZZ, Su Z-Z, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB: Bcl-2 and Bcl-XL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003, 22: 8758-8773. 10.1038/sj.onc.1206891.CrossRefPubMed Lebedeva IV, Sarkar D, Su ZZ, Su Z-Z, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB: Bcl-2 and Bcl-XL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003, 22: 8758-8773. 10.1038/sj.onc.1206891.CrossRefPubMed
19.
go back to reference Jiang WG, Davies G, Martin TA, Parcc C, Watkins G, Mason MD, Mokbel K, Mansel RE: Molecular targeting of matrilysin and its impact on tumour growth in vivo, the potential implications in breast cancer therapy. Clin Cancer Res. 2005, 11: 6012-6019. 10.1158/1078-0432.CCR-05-0275.CrossRefPubMed Jiang WG, Davies G, Martin TA, Parcc C, Watkins G, Mason MD, Mokbel K, Mansel RE: Molecular targeting of matrilysin and its impact on tumour growth in vivo, the potential implications in breast cancer therapy. Clin Cancer Res. 2005, 11: 6012-6019. 10.1158/1078-0432.CCR-05-0275.CrossRefPubMed
20.
go back to reference Jiang WG, Watkins G, Douglas-Jones A, Mokbel K, Mansel RE, Fodstad O: Expression of Com-1/p8 in human breast cancer, and its relevance to clinical outcome and ER status. Int J Cancer. 2005, 117: 730-737. 10.1002/ijc.21221.CrossRefPubMed Jiang WG, Watkins G, Douglas-Jones A, Mokbel K, Mansel RE, Fodstad O: Expression of Com-1/p8 in human breast cancer, and its relevance to clinical outcome and ER status. Int J Cancer. 2005, 117: 730-737. 10.1002/ijc.21221.CrossRefPubMed
21.
22.
go back to reference Jiang WG, Martin TA, Russell-Lewis J, Ye L, Douglas-Jones A, Mansel RE: Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol Cancer. 2008, 7: 71-PubMedCentralCrossRefPubMed Jiang WG, Martin TA, Russell-Lewis J, Ye L, Douglas-Jones A, Mansel RE: Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol Cancer. 2008, 7: 71-PubMedCentralCrossRefPubMed
23.
go back to reference Keese CR, Wegener J, Walker SR, Giaever I: Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA. 2004, 101: 1554-1559. 10.1073/pnas.0307588100.PubMedCentralCrossRefPubMed Keese CR, Wegener J, Walker SR, Giaever I: Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA. 2004, 101: 1554-1559. 10.1073/pnas.0307588100.PubMedCentralCrossRefPubMed
24.
go back to reference Gopalan B, Litvak A, Sharma S, Mhashilkar AM, Chada S, Ramesh R: Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells. Cancer Res. 2005, 65: 3017-3024.PubMed Gopalan B, Litvak A, Sharma S, Mhashilkar AM, Chada S, Ramesh R: Activation of the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells. Cancer Res. 2005, 65: 3017-3024.PubMed
25.
go back to reference Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q, Liu X: The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther. 2006, 13: 1011-1022. 10.1038/sj.cgt.7700969.CrossRefPubMed Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q, Liu X: The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther. 2006, 13: 1011-1022. 10.1038/sj.cgt.7700969.CrossRefPubMed
26.
go back to reference Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R, Gopalkrishnan RV, Grant S, Fisher PB, Dent P: MDA-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003, 2: 347-353.CrossRefPubMed Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R, Gopalkrishnan RV, Grant S, Fisher PB, Dent P: MDA-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003, 2: 347-353.CrossRefPubMed
Metadata
Title
Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer
Authors
Richard J Ablin
Howard G Kynaston
Malcolm D Mason
Wen G Jiang
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2011
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-9-49

Other articles of this Issue 1/2011

Journal of Translational Medicine 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.