Skip to main content
Top
Published in: Journal of Translational Medicine 1/2005

Open Access 01-12-2005 | Research

Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells

Authors: Yasuto Akiyama, Ryuji Tanosaki, Naoki Inoue, Makiko Shimada, Yukie Hotate, Akifumi Yamamoto, Naoya Yamazaki, Ichiro Kawashima, Ikuei Nukaya, Kazutoh Takesako, Kouji Maruyama, Yoichi Takaue, Ken Yamaguchi

Published in: Journal of Translational Medicine | Issue 1/2005

Login to get access

Abstract

Background

Metastatic, chemotherapy-resistant melanoma is an intractable cancer with a very poor prognosis. As to immunotherapy targeting metastatic melanoma, HLA-A2+ patients were mainly enrolled in the study in Western countries. However, HLA-A24+ melanoma patients-oriented immunotherapy has not been fully investigated. In the present study, we investigated the effect of dendritic cell (DC)-based immunotherapy on metastatic melanoma patients with HLA-A2 or A24 genotype.

Methods

Nine cases of metastatic melanoma were enrolled into a phase I study of monocyte-derived dendritic cell (DC)-based immunotherapy. HLA-genotype analysis revealed 4 cases of HLA-A*0201, 1 of A*0206 and 4 of A*2402. Enriched monocytes were obtained using OptiPrep™ from leukapheresis products, and then incubated with GM-CSF and IL-4 in a closed serum-free system. After pulsing with a cocktail of 5 melanoma-associated synthetic peptides (gp100, tyrosinase, MAGE-2, MAGE-3 and MART-1 or MAGE-1) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Finally, thawed DCs were washed and injected subcutaneously (s.c.) into the inguinal region in a dose-escalation manner.

Results

The mean percentage of DCs rated as lin-HLA-DR+ in melanoma patients was 46.4 ± 15.6 %. Most of DCs expressed high level of co-stimulatory molecules and type1 phenotype (CD11c+HLA-DR+), while a moderate number of mature DCs with CD83 and CCR7 positive were contained in DC products. DC injections were well tolerated except for transient liver dysfunction (elevation of transaminases, Grade I-II). All 6 evaluable cases except for early PD showed positive immunological responses to more than 2 melanoma peptides in an ELISPOT assay. Two representative responders demonstrated strong HLA-class I protein expression in the tumor and very high scores of ELISPOT that might correlate to the regression of metastatic tumors. Clinical response through DC injections was as follows : 1CR, 1 PR, 1SD and 6 PD. All 59 DC injections in the phase I study were tolerable in terms of safety, however, the maximal tolerable dose of DCs was not determined.

Conclusions

These results suggested that peptide cocktail-treated DC-based immunotherapy had the potential for utilizing as one of therapeutic tools against metastatic melanoma in Japan.
Appendix
Available only for authorised users
Literature
1.
go back to reference Renkvist N, Castelli C, Robbins PF, Parmiani G: A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother. 2001, 50: 3-15. 10.1007/s002620000169.CrossRefPubMed Renkvist N, Castelli C, Robbins PF, Parmiani G: A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother. 2001, 50: 3-15. 10.1007/s002620000169.CrossRefPubMed
2.
go back to reference Kawakami Y, Eliyasu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994, 180: 347-352. 10.1084/jem.180.1.347.CrossRefPubMed Kawakami Y, Eliyasu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994, 180: 347-352. 10.1084/jem.180.1.347.CrossRefPubMed
3.
go back to reference Bakker AB, Marland G, de Boer AJ, Huijbens RJ, Danen HJ, Adema GJ, Figdor CG: Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro. Cancer Res. 1995, 55: 5330-5334.PubMed Bakker AB, Marland G, de Boer AJ, Huijbens RJ, Danen HJ, Adema GJ, Figdor CG: Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro. Cancer Res. 1995, 55: 5330-5334.PubMed
4.
go back to reference Wölfel T, van Pel A, Brichard V, Schneider J, Seliger B, Büschenfelde KH, Boon T: Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol. 1994, 24: 759-764.CrossRefPubMed Wölfel T, van Pel A, Brichard V, Schneider J, Seliger B, Büschenfelde KH, Boon T: Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol. 1994, 24: 759-764.CrossRefPubMed
5.
go back to reference Kawashima I, Huddon SJ, Ysai V, Southwood S, Takesako K, Appella A, Celis E: The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol. 1998, 50: 1-14. 10.1016/S0198-8859(97)00255-3.CrossRef Kawashima I, Huddon SJ, Ysai V, Southwood S, Takesako K, Appella A, Celis E: The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol. 1998, 50: 1-14. 10.1016/S0198-8859(97)00255-3.CrossRef
6.
go back to reference Van der Bruggen P, Basti J, Gajewski T, Coulie PG, Boel P, de Smet C, Traversari C, Townsend A, Boon T: A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol. 1994, 24: 3038-3043.CrossRefPubMed Van der Bruggen P, Basti J, Gajewski T, Coulie PG, Boel P, de Smet C, Traversari C, Townsend A, Boon T: A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol. 1994, 24: 3038-3043.CrossRefPubMed
7.
go back to reference Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999, 6: 1669-1678. 10.1084/jem.190.11.1669.CrossRef Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999, 6: 1669-1678. 10.1084/jem.190.11.1669.CrossRef
8.
go back to reference Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, Marincola FM: Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother. 2000, 23: 487-498. 10.1097/00002371-200007000-00013.CrossRefPubMed Panelli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA, Marincola FM: Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother. 2000, 23: 487-498. 10.1097/00002371-200007000-00013.CrossRefPubMed
9.
go back to reference Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, Ryback ME, Weber J: Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother. 2001, 24: 66-78. 10.1097/00002371-200101000-00008.CrossRefPubMed Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, Ryback ME, Weber J: Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother. 2001, 24: 66-78. 10.1097/00002371-200101000-00008.CrossRefPubMed
10.
go back to reference Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dumme R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998, 4: 328-332. 10.1038/nm0398-328.CrossRefPubMed Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dumme R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998, 4: 328-332. 10.1038/nm0398-328.CrossRefPubMed
11.
go back to reference Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001, 61: 6451-6458.PubMed Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001, 61: 6451-6458.PubMed
12.
go back to reference Kang X, Kawakami Y, El-Gamil M, Wang R, Sakaguchi K, Yannelli JR, Appella E, Rosenberg SA, Robbins PF: Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol. 1995, 155: 1343-1348.PubMed Kang X, Kawakami Y, El-Gamil M, Wang R, Sakaguchi K, Yannelli JR, Appella E, Rosenberg SA, Robbins PF: Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol. 1995, 155: 1343-1348.PubMed
13.
go back to reference Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T: A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer. 1999, 80: 169-172.CrossRefPubMed Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T: A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer. 1999, 80: 169-172.CrossRefPubMed
14.
go back to reference Tahara K, Takasako K, Sette A, Celis E, Kitano S, Akiyoshi T: Identification of a MAGE-2-encoded human leukocyte antigen-A24-binding synthetic peptide that induces specific antitumor cytotoxic T lymphocytes. Clin Cancer Res. 1999, 5: 2236-2241.PubMed Tahara K, Takasako K, Sette A, Celis E, Kitano S, Akiyoshi T: Identification of a MAGE-2-encoded human leukocyte antigen-A24-binding synthetic peptide that induces specific antitumor cytotoxic T lymphocytes. Clin Cancer Res. 1999, 5: 2236-2241.PubMed
15.
go back to reference Tanaka F, Fujie T, Tahara K, Mori M, Takasako K, Sette A, Celis E, Akiyoshi T: Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res. 1997, 57: 4465-4468.PubMed Tanaka F, Fujie T, Tahara K, Mori M, Takasako K, Sette A, Celis E, Akiyoshi T: Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res. 1997, 57: 4465-4468.PubMed
16.
go back to reference Umano Y, Tsunoda T, Tanaka H, Matsuda K, Yamaue H, Tanimura H: Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br J Cancer. 2001, 84: 1052-1057. 10.1054/bjoc.2000.1715.PubMedCentralCrossRefPubMed Umano Y, Tsunoda T, Tanaka H, Matsuda K, Yamaue H, Tanimura H: Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br J Cancer. 2001, 84: 1052-1057. 10.1054/bjoc.2000.1715.PubMedCentralCrossRefPubMed
17.
go back to reference Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S: Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cutotoxic T lymphocytes. Blood. 2001, 97: 2903-2907. 10.1182/blood.V97.9.2903.CrossRefPubMed Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S: Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cutotoxic T lymphocytes. Blood. 2001, 97: 2903-2907. 10.1182/blood.V97.9.2903.CrossRefPubMed
18.
go back to reference Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, Takesako K, Kato I: Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int J Cancer. 1999, 80: 92-97.CrossRefPubMed Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, Takesako K, Kato I: Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int J Cancer. 1999, 80: 92-97.CrossRefPubMed
19.
go back to reference Akiyama Y, Maruyama K, Nara N, Mochizuki T, Yamamoto A, Yamazaki N, Kawashima I, Nukaya I, Takesako K, Yamaguchi K: Cytotoxic T cell induction against human malignant melanoma cells using HLA-A24-restricted melanoma peptide cocktail. Anticancer Res. 2004, 24: 571-578.PubMed Akiyama Y, Maruyama K, Nara N, Mochizuki T, Yamamoto A, Yamazaki N, Kawashima I, Nukaya I, Takesako K, Yamaguchi K: Cytotoxic T cell induction against human malignant melanoma cells using HLA-A24-restricted melanoma peptide cocktail. Anticancer Res. 2004, 24: 571-578.PubMed
20.
go back to reference Kuzushima K, Hayashi N, Kimura H, Tsurumi T: Efficient identification of HLA-A2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer alrorithm and an enzyme-linked immunospot assay. Blood. 2001, 98: 1872-1881. 10.1182/blood.V98.6.1872.CrossRefPubMed Kuzushima K, Hayashi N, Kimura H, Tsurumi T: Efficient identification of HLA-A2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer alrorithm and an enzyme-linked immunospot assay. Blood. 2001, 98: 1872-1881. 10.1182/blood.V98.6.1872.CrossRefPubMed
21.
go back to reference Sidney J, Southwood S, Mann DL, Fernandez-Vina AA, Newman MJ, Sette A: Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum Immunol. 2001, 62: 1200-1216. 10.1016/S0198-8859(01)00319-6.CrossRefPubMed Sidney J, Southwood S, Mann DL, Fernandez-Vina AA, Newman MJ, Sette A: Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum Immunol. 2001, 62: 1200-1216. 10.1016/S0198-8859(01)00319-6.CrossRefPubMed
22.
go back to reference Nishiyama T, Tachibana M, Horiguchi Y, Nakamura K, Ikeda Y, Takesako K, Murai M: Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A14-specific MAGE-3 peptide. Clin Cancer Res. 2001, 7: 23-31.PubMed Nishiyama T, Tachibana M, Horiguchi Y, Nakamura K, Ikeda Y, Takesako K, Murai M: Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A14-specific MAGE-3 peptide. Clin Cancer Res. 2001, 7: 23-31.PubMed
23.
go back to reference Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Ariyoshi T, Mori M: Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res. 2001, 7: 2277-2284.PubMed Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Ariyoshi T, Mori M: Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res. 2001, 7: 2277-2284.PubMed
24.
go back to reference Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, Fuji N, Fujiwara H, Ochiai T, Itoi H, Sonoyama T, Hagiwara A, Takesak K, Yamaguchi H: Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol. 2004, 24: 909-917.PubMed Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, Fuji N, Fujiwara H, Ochiai T, Itoi H, Sonoyama T, Hagiwara A, Takesak K, Yamaguchi H: Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol. 2004, 24: 909-917.PubMed
25.
go back to reference Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM: Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res. 2001, 7: 4253-4261.PubMed Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM: Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res. 2001, 7: 4253-4261.PubMed
26.
go back to reference Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J: Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responders to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res. 2003, 9: 641-649.PubMed Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J: Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responders to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res. 2003, 9: 641-649.PubMed
27.
go back to reference Khong HT, Wang QJ, Rosenberg SA: Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother. 2004, 27: 184-190. 10.1097/00002371-200405000-00002.PubMedCentralCrossRefPubMed Khong HT, Wang QJ, Rosenberg SA: Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother. 2004, 27: 184-190. 10.1097/00002371-200405000-00002.PubMedCentralCrossRefPubMed
28.
go back to reference Paschen A, Mendez RM, Jimenez P, Sucker A, Ruiz-Cabello F, Song M, Garrido F, Schadendorf D: Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer. 2003, 103: 759-767. 10.1002/ijc.10906.CrossRefPubMed Paschen A, Mendez RM, Jimenez P, Sucker A, Ruiz-Cabello F, Song M, Garrido F, Schadendorf D: Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer. 2003, 103: 759-767. 10.1002/ijc.10906.CrossRefPubMed
29.
go back to reference Hofbauer GF, Burkhart A, Schuler G, Dummer R, Burg G, Nestle FO: High frequency of melanoma-associated antigen or HLA class I loss does not correlate with survival in primary melanoma. J Immunother. 2004, 27: 73-78. 10.1097/00002371-200401000-00007.CrossRefPubMed Hofbauer GF, Burkhart A, Schuler G, Dummer R, Burg G, Nestle FO: High frequency of melanoma-associated antigen or HLA class I loss does not correlate with survival in primary melanoma. J Immunother. 2004, 27: 73-78. 10.1097/00002371-200401000-00007.CrossRefPubMed
30.
go back to reference Suen Y, Lee SM, Aono F, Hou S, Loudovaris M, Ofstein G, Bender JG: Comparison of monocyte enrichment by immuno-magnetic depletion or adherence for the clinical-scale generation of DC. Cytotherapy. 2001, 3: 365-372. 10.1080/146532401753277184.CrossRefPubMed Suen Y, Lee SM, Aono F, Hou S, Loudovaris M, Ofstein G, Bender JG: Comparison of monocyte enrichment by immuno-magnetic depletion or adherence for the clinical-scale generation of DC. Cytotherapy. 2001, 3: 365-372. 10.1080/146532401753277184.CrossRefPubMed
Metadata
Title
Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells
Authors
Yasuto Akiyama
Ryuji Tanosaki
Naoki Inoue
Makiko Shimada
Yukie Hotate
Akifumi Yamamoto
Naoya Yamazaki
Ichiro Kawashima
Ikuei Nukaya
Kazutoh Takesako
Kouji Maruyama
Yoichi Takaue
Ken Yamaguchi
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2005
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-3-4

Other articles of this Issue 1/2005

Journal of Translational Medicine 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.