Skip to main content
Top
Published in: Journal of Translational Medicine 2/2012

Open Access 01-10-2012 | Meeting abstract

Hypoxia in obesity - from bench to bedside

Author: Jianping Ye

Published in: Journal of Translational Medicine | Special Issue 2/2012

Login to get access

Excerpt

It is generally accepted that hypoxia is related to sleep apnea in obesity. This concept has been changed since the report of hypoxia response in adipose tissue of obese mice by our group in 2007 [1]. The observation has been confirmed by many laboratories in multiple obesity model systems including mouse and human [28]. The adipose tissue hypoxia has been a new concept to explain the adipose tissue dysfunction in obesity [9, 10]. It provides a unified answer to all of the pathological changes in the adipose tissue under obesity, such as chronic inflammation, ER stress, leptin expression, adiponectin reduction, adipocyte death, elevated lipolysis and adipocyte insulin resistance [9, 10]. Studies suggest that capillary dysfunction occurs during expansion of adipose tissue [11, 12], and leads to reduction in adipose blood supply [13], which is responsible for the tissue hypoxia. In this aspect, the adipose tissue dysfunction is a result of local vascular failure in obesity [13]. In addition, the hypoxia-induced inflammation response has beneficial effects in the body. For example, inflammatory response stimulates adipose tissue remodeling [11, 14] and promotes energy expenditure to fight against obesity [15, 16]. These new insights into the adipose tissue biology suggest that the hypoxia response may be a feedback mechanism in the protection of body against obesity. In translation of this view into clinical setting, it is believed that sleep apnea is also a protection mechanism in the body to maintain energy homeostasis in obesity. It uses the hypoxia response to trigger the onset of multiple protection mechanisms in the body. …
Literature
1.
go back to reference Ye J, Gao Z, Yin J, He H: Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007, 293: E1118-E1128. 10.1152/ajpendo.00435.2007.CrossRefPubMed Ye J, Gao Z, Yin J, He H: Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007, 293: E1118-E1128. 10.1152/ajpendo.00435.2007.CrossRefPubMed
2.
go back to reference Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M: Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007, 56 (4): 901-911. 10.2337/db06-0911.CrossRefPubMed Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M: Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007, 56 (4): 901-911. 10.2337/db06-0911.CrossRefPubMed
3.
go back to reference Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing I, Yates AP, Pemberton PW, Malik RA: Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009, 119 (12): 1661-1670. 10.1161/CIRCULATIONAHA.108.821181.CrossRefPubMed Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing I, Yates AP, Pemberton PW, Malik RA: Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009, 119 (12): 1661-1670. 10.1161/CIRCULATIONAHA.108.821181.CrossRefPubMed
4.
go back to reference Yin J, Gao Z, He Q, Ye J: Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009, 296: E333-E342.PubMedCentralCrossRefPubMed Yin J, Gao Z, He Q, Ye J: Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009, 296: E333-E342.PubMedCentralCrossRefPubMed
5.
go back to reference Rausch ME, Weisberg S, Vardhana P, Tortoriello DV: Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond). 2008, 32 (3): 451-463. 10.1038/sj.ijo.0803744.CrossRef Rausch ME, Weisberg S, Vardhana P, Tortoriello DV: Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond). 2008, 32 (3): 451-463. 10.1038/sj.ijo.0803744.CrossRef
6.
go back to reference Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR: Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009, 58 (3): 718-725.PubMedCentralCrossRefPubMed Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR: Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009, 58 (3): 718-725.PubMedCentralCrossRefPubMed
7.
go back to reference Pasarica M, Rood J, Ravussin E, Schwarz JM, Smith SR, Redman LM: Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. The Journal of clinical endocrinology and metabolism. 2010, 95 (8): 4052-4055. 10.1210/jc.2009-2377.PubMedCentralCrossRefPubMed Pasarica M, Rood J, Ravussin E, Schwarz JM, Smith SR, Redman LM: Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. The Journal of clinical endocrinology and metabolism. 2010, 95 (8): 4052-4055. 10.1210/jc.2009-2377.PubMedCentralCrossRefPubMed
8.
go back to reference Zhang L, Ebenezer PJ, Dasuri K, Fernandez-Kim SO, Francis J, Mariappan N, Gao Z, Ye J, Bruce-Keller A, Keller JN: Aging is associated with hypoxia and oxidative stress in adipose tissue: Implications for adipose function. American journal of physiology-Endocrinology and metabolism. 2011, 301 (4): E599-E607. 10.1152/ajpendo.00059.2011.PubMedCentralCrossRefPubMed Zhang L, Ebenezer PJ, Dasuri K, Fernandez-Kim SO, Francis J, Mariappan N, Gao Z, Ye J, Bruce-Keller A, Keller JN: Aging is associated with hypoxia and oxidative stress in adipose tissue: Implications for adipose function. American journal of physiology-Endocrinology and metabolism. 2011, 301 (4): E599-E607. 10.1152/ajpendo.00059.2011.PubMedCentralCrossRefPubMed
9.
go back to reference Ye J: Emerging Role of Adipose Tissue Hypoxia in Obesity and Insulin Resistance. Int J Obes. 2009, 33 (1): 54-66. 10.1038/ijo.2008.229.CrossRef Ye J: Emerging Role of Adipose Tissue Hypoxia in Obesity and Insulin Resistance. Int J Obes. 2009, 33 (1): 54-66. 10.1038/ijo.2008.229.CrossRef
10.
go back to reference Trayhurn P, Wang B, Wood IS: Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr. 2008, 1-9. Trayhurn P, Wang B, Wood IS: Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr. 2008, 1-9.
11.
go back to reference Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J: Macrophage Infiltration into Adipose Tissue May Promote Angiogenesis for Adipose Tissue Remodeling in Obesity. Am J Physiol Endocrinol Metab. 2008, 295: E313-E322. 10.1152/ajpendo.90296.2008.PubMedCentralCrossRefPubMed Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J: Macrophage Infiltration into Adipose Tissue May Promote Angiogenesis for Adipose Tissue Remodeling in Obesity. Am J Physiol Endocrinol Metab. 2008, 295: E313-E322. 10.1152/ajpendo.90296.2008.PubMedCentralCrossRefPubMed
12.
go back to reference Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, Tran KV, Straubhaar J, Nicoloro S, Czech MP: Depot-Specific Differences and Insufficient Subcutaneous Adipose Tissue Angiogenesis in Human Obesity. Circulation. 2011, 123 (2): 186-194. 10.1161/CIRCULATIONAHA.110.970145.PubMedCentralCrossRefPubMed Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, Tran KV, Straubhaar J, Nicoloro S, Czech MP: Depot-Specific Differences and Insufficient Subcutaneous Adipose Tissue Angiogenesis in Human Obesity. Circulation. 2011, 123 (2): 186-194. 10.1161/CIRCULATIONAHA.110.970145.PubMedCentralCrossRefPubMed
13.
14.
go back to reference Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner-Eiger S, Dineen S, Magalang UJ: HIF 1 alpha Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Mol Cell Biol. 2009, 29 (16): 4467-4483. 10.1128/MCB.00192-09.PubMedCentralCrossRefPubMed Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner-Eiger S, Dineen S, Magalang UJ: HIF 1 alpha Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Mol Cell Biol. 2009, 29 (16): 4467-4483. 10.1128/MCB.00192-09.PubMedCentralCrossRefPubMed
15.
go back to reference Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Mynatt R, Martin RJ, Keenan M, Gao Z, Ye J: Uncoupling of Inflammation and Insulin Resistance by NF-kB in Transgenic Mice through Induction of Energy Expenditure. J Biol Chem. 2010, 285: 4637-4644. 10.1074/jbc.M109.068007.PubMedCentralCrossRefPubMed Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Mynatt R, Martin RJ, Keenan M, Gao Z, Ye J: Uncoupling of Inflammation and Insulin Resistance by NF-kB in Transgenic Mice through Induction of Energy Expenditure. J Biol Chem. 2010, 285: 4637-4644. 10.1074/jbc.M109.068007.PubMedCentralCrossRefPubMed
16.
go back to reference Jiao P, Feng B, Ma J, Nie Y, Paul E, Li Y, Xu H: Constitutive Activation of IKKβ in Adipose Tissue Prevents Diet-Induced Obesity in Mice. Endocrinology. 2012, 153 (1): 154-165. 10.1210/en.2011-1346.CrossRefPubMed Jiao P, Feng B, Ma J, Nie Y, Paul E, Li Y, Xu H: Constitutive Activation of IKKβ in Adipose Tissue Prevents Diet-Induced Obesity in Mice. Endocrinology. 2012, 153 (1): 154-165. 10.1210/en.2011-1346.CrossRefPubMed
Metadata
Title
Hypoxia in obesity - from bench to bedside
Author
Jianping Ye
Publication date
01-10-2012
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue Special Issue 2/2012
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-S2-A20

Other articles of this Special Issue 2/2012

Journal of Translational Medicine 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.