Skip to main content
Top
Published in: Journal of Inflammation 1/2010

Open Access 01-12-2010 | Research

An ovine tracheal explant culture model for allergic airway inflammation

Authors: Latasha Abeynaike, Els NT Meeusen, Robert J Bischof

Published in: Journal of Inflammation | Issue 1/2010

Login to get access

Abstract

Background

The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo.

Methods

Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM) allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α) by cultured tracheal explants, was assessed by ELISA.

Results

The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h) explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants.

Conclusions

Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the application of tracheal explant cultures in relevant ex vivo investigations on the therapeutic and mechanistic modalities of asthmatic disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Takizawa H: Airway epithelial cells as regulators of airway inflammation (Review). Int J Mol Med. 1998, 1: 367-378.PubMed Takizawa H: Airway epithelial cells as regulators of airway inflammation (Review). Int J Mol Med. 1998, 1: 367-378.PubMed
2.
go back to reference Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC: Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol. 2007, 120: 1279-1284. 10.1016/j.jaci.2007.08.046.PubMedPubMedCentralCrossRef Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC: Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol. 2007, 120: 1279-1284. 10.1016/j.jaci.2007.08.046.PubMedPubMedCentralCrossRef
3.
go back to reference Haley KJ, Sunday ME, Wiggs BR, Kozakewich HP, Reilly JJ, Mentzer SJ, Sugarbaker DJ, Doerschuk CM, Drazen JM: Inflammatory Cell Distribution within and along Asthmatic Airways. Am J Respir Crit Care Med. 1998, 158: 565-572.PubMedCrossRef Haley KJ, Sunday ME, Wiggs BR, Kozakewich HP, Reilly JJ, Mentzer SJ, Sugarbaker DJ, Doerschuk CM, Drazen JM: Inflammatory Cell Distribution within and along Asthmatic Airways. Am J Respir Crit Care Med. 1998, 158: 565-572.PubMedCrossRef
4.
go back to reference Holgate ST: The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin Exp Allergy. 1998, 28 (Suppl 5): 97-103. 10.1046/j.1365-2222.1998.028s5097.x.PubMedCrossRef Holgate ST: The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin Exp Allergy. 1998, 28 (Suppl 5): 97-103. 10.1046/j.1365-2222.1998.028s5097.x.PubMedCrossRef
5.
go back to reference Fixman ED, Stewart A, Martin JG: Basic mechanisms of development of airway structural changes in asthma. Eur Respir J. 2007, 29: 379-389. 10.1183/09031936.00053506.PubMedCrossRef Fixman ED, Stewart A, Martin JG: Basic mechanisms of development of airway structural changes in asthma. Eur Respir J. 2007, 29: 379-389. 10.1183/09031936.00053506.PubMedCrossRef
7.
go back to reference Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P: Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996, 14: 104-112.PubMedCrossRef Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P: Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996, 14: 104-112.PubMedCrossRef
8.
go back to reference Kikuchi T, Shively JD, Foley JS, Drazen JM, Tschumperlin DJ: Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation. Am J Physiol Lung Cell Mol Physiol. 2004, 287: L119-126. 10.1152/ajplung.00365.2003.PubMedCrossRef Kikuchi T, Shively JD, Foley JS, Drazen JM, Tschumperlin DJ: Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation. Am J Physiol Lung Cell Mol Physiol. 2004, 287: L119-126. 10.1152/ajplung.00365.2003.PubMedCrossRef
9.
go back to reference Kitson C, Angel B, Judd D, Rothery S, Severs NJ, Dewar A, Huang L, Wadsworth SC, Cheng SH, Geddes DM, Alton EW: The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther. 1999, 6: 534-546. 10.1038/sj.gt.3300840.PubMedCrossRef Kitson C, Angel B, Judd D, Rothery S, Severs NJ, Dewar A, Huang L, Wadsworth SC, Cheng SH, Geddes DM, Alton EW: The extra- and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther. 1999, 6: 534-546. 10.1038/sj.gt.3300840.PubMedCrossRef
10.
go back to reference Ferrari S, Griesenbach U, Shiraki-Iida T, Shu T, Hironaka T, Hou X, Williams J, Zhu J, Jeffery PK, Geddes DM, et al.: A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther. 2004, 11: 1659-1664. 10.1038/sj.gt.3302334.PubMedCrossRef Ferrari S, Griesenbach U, Shiraki-Iida T, Shu T, Hironaka T, Hou X, Williams J, Zhu J, Jeffery PK, Geddes DM, et al.: A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther. 2004, 11: 1659-1664. 10.1038/sj.gt.3302334.PubMedCrossRef
11.
go back to reference Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA, Scarpa M, Wainwright B, Evans MJ, Colledge WH, et al.: Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther. 2001, 8: 1380-1386. 10.1038/sj.gt.3301525.PubMedCrossRef Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA, Scarpa M, Wainwright B, Evans MJ, Colledge WH, et al.: Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther. 2001, 8: 1380-1386. 10.1038/sj.gt.3301525.PubMedCrossRef
12.
go back to reference Clancy SM, Yeadon M, Parry J, Yeoman MS, Adam EC, Schumacher U, Lethem MI: Endothelin-1 inhibits mucin secretion from ovine airway epithelial goblet cells. Am J Respir Cell Mol Biol. 2004, 31: 663-671. 10.1165/rcmb.2003-0331OC.PubMedCrossRef Clancy SM, Yeadon M, Parry J, Yeoman MS, Adam EC, Schumacher U, Lethem MI: Endothelin-1 inhibits mucin secretion from ovine airway epithelial goblet cells. Am J Respir Cell Mol Biol. 2004, 31: 663-671. 10.1165/rcmb.2003-0331OC.PubMedCrossRef
13.
go back to reference Allen JE, Bischof RJ, Sucie Chang HY, Hirota JA, Hirst SJ, Inman MD, Mitzner W, Sutherland TE: Animal models of airway inflammation and airway smooth muscle remodelling in asthma. Pulm Pharmacol Ther. 2009, 22: 455-465. 10.1016/j.pupt.2009.04.001.PubMedCrossRef Allen JE, Bischof RJ, Sucie Chang HY, Hirota JA, Hirst SJ, Inman MD, Mitzner W, Sutherland TE: Animal models of airway inflammation and airway smooth muscle remodelling in asthma. Pulm Pharmacol Ther. 2009, 22: 455-465. 10.1016/j.pupt.2009.04.001.PubMedCrossRef
14.
go back to reference Bischof RJ, Snibson K, Shaw R, Meeusen EN: Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin Exp Allergy. 2003, 33: 367-375. 10.1046/j.1365-2222.2003.01534.x.PubMedCrossRef Bischof RJ, Snibson K, Shaw R, Meeusen EN: Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin Exp Allergy. 2003, 33: 367-375. 10.1046/j.1365-2222.2003.01534.x.PubMedCrossRef
15.
go back to reference Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ: Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discovery Today: Disease Models. 2010, Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ: Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discovery Today: Disease Models. 2010,
16.
go back to reference Koumoundouros E, Bischof RJ, Meeusen EN, Mareels IM, Snibson KJ: Chronic airway disease: deteriorating pulmonary function in sheep associated with repeated challenges of house dust mite. Exp Lung Res. 2006, 32: 321-330. 10.1080/01902140600916960.PubMedCrossRef Koumoundouros E, Bischof RJ, Meeusen EN, Mareels IM, Snibson KJ: Chronic airway disease: deteriorating pulmonary function in sheep associated with repeated challenges of house dust mite. Exp Lung Res. 2006, 32: 321-330. 10.1080/01902140600916960.PubMedCrossRef
17.
go back to reference Bischof RJ, Snibson KJ, Velden JV, Meeusen EN: Immune response to allergens in sheep sensitized to house dust mite. J Inflamm (Lond). 2008, 5: 16-10.1186/1476-9255-5-16.CrossRef Bischof RJ, Snibson KJ, Velden JV, Meeusen EN: Immune response to allergens in sheep sensitized to house dust mite. J Inflamm (Lond). 2008, 5: 16-10.1186/1476-9255-5-16.CrossRef
18.
go back to reference Castillo-Melendez M, Chow JA, Walker DW: Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004, 55: 864-871. 10.1203/01.PDR.0000115679.86566.C4.PubMedCrossRef Castillo-Melendez M, Chow JA, Walker DW: Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004, 55: 864-871. 10.1203/01.PDR.0000115679.86566.C4.PubMedCrossRef
19.
go back to reference Miller HR, Pemberton AD: Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002, 105: 375-390. 10.1046/j.1365-2567.2002.01375.x.PubMedPubMedCentralCrossRef Miller HR, Pemberton AD: Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002, 105: 375-390. 10.1046/j.1365-2567.2002.01375.x.PubMedPubMedCentralCrossRef
20.
go back to reference Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN: Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem. 2002, 277: 14916-14924. 10.1074/jbc.M200214200.PubMedCrossRef Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN: Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem. 2002, 277: 14916-14924. 10.1074/jbc.M200214200.PubMedCrossRef
21.
go back to reference Rahman AN, Snibson KJ, Lee CS, Meeusen EN: Effects of implantation and early pregnancy on the expression of cytokines and vascular surface molecules in the sheep endometrium. J Reprod Immunol. 2004, 64: 45-58. 10.1016/j.jri.2004.08.008.PubMedCrossRef Rahman AN, Snibson KJ, Lee CS, Meeusen EN: Effects of implantation and early pregnancy on the expression of cytokines and vascular surface molecules in the sheep endometrium. J Reprod Immunol. 2004, 64: 45-58. 10.1016/j.jri.2004.08.008.PubMedCrossRef
22.
go back to reference Joachim RA, Quarcoo D, Arck PC, Herz U, Renz H, Klapp BF: Stress Enhances Airway Reactivity and Airway Inflammation in an Animal Model of Allergic Bronchial Asthma. Psychosom Med. 2003, 65: 811-815. 10.1097/01.PSY.0000088582.50468.A3.PubMedCrossRef Joachim RA, Quarcoo D, Arck PC, Herz U, Renz H, Klapp BF: Stress Enhances Airway Reactivity and Airway Inflammation in an Animal Model of Allergic Bronchial Asthma. Psychosom Med. 2003, 65: 811-815. 10.1097/01.PSY.0000088582.50468.A3.PubMedCrossRef
23.
go back to reference Snibson KJ, Bischof RJ, Slocombe RF, Meeusen EN: Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin Exp Allergy. 2005, 35: 146-152. 10.1111/j.1365-2222.2005.02137.x.PubMedCrossRef Snibson KJ, Bischof RJ, Slocombe RF, Meeusen EN: Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin Exp Allergy. 2005, 35: 146-152. 10.1111/j.1365-2222.2005.02137.x.PubMedCrossRef
24.
go back to reference Holgate ST: Pathogenesis of asthma. Clin Exp Allergy. 2008, 38: 872-897. 10.1111/j.1365-2222.2008.02971.x.PubMedCrossRef Holgate ST: Pathogenesis of asthma. Clin Exp Allergy. 2008, 38: 872-897. 10.1111/j.1365-2222.2008.02971.x.PubMedCrossRef
25.
go back to reference Machado DC, Horton D, Harrop R, Peachell PT, Helm BA: Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE. Eur J Immunol. 1996, 26: 2972-2980. 10.1002/eji.1830261224.PubMedCrossRef Machado DC, Horton D, Harrop R, Peachell PT, Helm BA: Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE. Eur J Immunol. 1996, 26: 2972-2980. 10.1002/eji.1830261224.PubMedCrossRef
26.
27.
go back to reference Rothenberg ME, Hogan SP: The eosinophil. Annu Rev Immunol. 2006, 24: 147-174. 10.1146/annurev.immunol.24.021605.090720.PubMedCrossRef Rothenberg ME, Hogan SP: The eosinophil. Annu Rev Immunol. 2006, 24: 147-174. 10.1146/annurev.immunol.24.021605.090720.PubMedCrossRef
28.
go back to reference Marini M, Vittori E, Hollemborg J, Mattoli S: Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol. 1992, 89: 1001-1009. 10.1016/0091-6749(92)90223-O.PubMedCrossRef Marini M, Vittori E, Hollemborg J, Mattoli S: Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol. 1992, 89: 1001-1009. 10.1016/0091-6749(92)90223-O.PubMedCrossRef
29.
go back to reference Yokoyama A, Kohno N, Fujino S, Hamada H, Inoue Y, Fujioka S, Ishida S, Hiwada K: Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med. 1995, 151: 1354-1358.PubMedCrossRef Yokoyama A, Kohno N, Fujino S, Hamada H, Inoue Y, Fujioka S, Ishida S, Hiwada K: Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med. 1995, 151: 1354-1358.PubMedCrossRef
Metadata
Title
An ovine tracheal explant culture model for allergic airway inflammation
Authors
Latasha Abeynaike
Els NT Meeusen
Robert J Bischof
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2010
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/1476-9255-7-46

Other articles of this Issue 1/2010

Journal of Inflammation 1/2010 Go to the issue