Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2008

Open Access 01-12-2008 | Research

Arterial pressure changes monitoring with a new precordial noninvasive sensor

Authors: Tonino Bombardini, Vincenzo Gemignani, Elisabetta Bianchini, Lucia Venneri, Christina Petersen, Emilio Pasanisi, Lorenza Pratali, Mascia Pianelli, Francesco Faita, Massimo Giannoni, Giorgio Arpesella, Eugenio Picano

Published in: Cardiovascular Ultrasound | Issue 1/2008

Login to get access

Abstract

Background

Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.

Methods

The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.

Results

A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 mg, increasing to 12.7 ± 7.7 mg at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.

Conclusion

S2 recording quantitatively documents systemic pressure changes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Pianelli M, Faita F, Giannoni M, Picano E: Cardiac reflections and natural vibrations. Force-frequency relation recording system in the stress echo lab. Cardiovasc Ultrasound. 2007, 5 (1): 42-CrossRefPubMedPubMedCentral Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Pianelli M, Faita F, Giannoni M, Picano E: Cardiac reflections and natural vibrations. Force-frequency relation recording system in the stress echo lab. Cardiovasc Ultrasound. 2007, 5 (1): 42-CrossRefPubMedPubMedCentral
2.
go back to reference Gemignani V, Bianchini E, Faita F, Giannoni M, Pasanini E, Picano E, Bombardini T: Operator independent force-frequency relation monitoring during stress with a new transcutaneous cardiac force sensor. Proc 34th Annual Conference of Computers in Cardiology. 2007. Gemignani V, Bianchini E, Faita F, Giannoni M, Pasanini E, Picano E, Bombardini T: Operator independent force-frequency relation monitoring during stress with a new transcutaneous cardiac force sensor. Proc 34th Annual Conference of Computers in Cardiology. 2007.
3.
go back to reference Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Alonso-Rodriguez D, Pianelli M, Faita F, Giannoni M, Arpesella G, Picano E: Diastolic Time – Frequency Relation in the Stress Echo Lab. Filling timing and flow at different heart rates. Cardiovasc Ultrasound. 2008, 6: 15-CrossRefPubMedPubMedCentral Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Alonso-Rodriguez D, Pianelli M, Faita F, Giannoni M, Arpesella G, Picano E: Diastolic Time – Frequency Relation in the Stress Echo Lab. Filling timing and flow at different heart rates. Cardiovasc Ultrasound. 2008, 6: 15-CrossRefPubMedPubMedCentral
4.
go back to reference Tanigawa N, Smith D, Craige E: The influence of left ventricular relaxation in determination of the intensity of the aortic component of the second heart sound. Jap Circ J. 1991, 55: 737-43.CrossRefPubMed Tanigawa N, Smith D, Craige E: The influence of left ventricular relaxation in determination of the intensity of the aortic component of the second heart sound. Jap Circ J. 1991, 55: 737-43.CrossRefPubMed
5.
go back to reference Kusukawa R, Bruce DW, Sakamoto T, MacCanon DM, Luisada AA: Hemodynamic determinants of the amplitude of the second heart sound. J Appl Physiol. 1996, 21 (3): 938-946. Kusukawa R, Bruce DW, Sakamoto T, MacCanon DM, Luisada AA: Hemodynamic determinants of the amplitude of the second heart sound. J Appl Physiol. 1996, 21 (3): 938-946.
6.
go back to reference Sabbah H, Stein P: Investigation of the theory and mechanism of the origin of the second heart sound. Circ Res. 1976, 39: 874-82.CrossRefPubMed Sabbah H, Stein P: Investigation of the theory and mechanism of the origin of the second heart sound. Circ Res. 1976, 39: 874-82.CrossRefPubMed
7.
go back to reference Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG, : American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007, 20 (9): 1021-41.CrossRefPubMed Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG, : American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007, 20 (9): 1021-41.CrossRefPubMed
8.
go back to reference Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL, : Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008, 9 (4): 415-37.CrossRefPubMed Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL, : Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008, 9 (4): 415-37.CrossRefPubMed
9.
go back to reference Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E: Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Failure. 2005, 2: 173-81. 10.1016/j.ejheart.2004.04.019.CrossRef Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E: Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Failure. 2005, 2: 173-81. 10.1016/j.ejheart.2004.04.019.CrossRef
10.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, : Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, : Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105: 539-42.CrossRefPubMed
11.
go back to reference Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol. 2006, 188: 15-20. 10.1111/j.1748-1716.2006.01596.x.CrossRef Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol. 2006, 188: 15-20. 10.1111/j.1748-1716.2006.01596.x.CrossRef
12.
go back to reference Kass DA: Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992, 86: 513-21.CrossRefPubMed Kass DA: Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992, 86: 513-21.CrossRefPubMed
13.
go back to reference Bombardini T: Method and device for the diagnosis and therapy of chronic heart failure. United States Patent US 6, 859, 662. Issued on February 22. 2005. Bombardini T: Method and device for the diagnosis and therapy of chronic heart failure. United States Patent US 6, 859, 662. Issued on February 22. 2005.
14.
go back to reference Rangayyan MR, Lehner RJ: Phonocardiogram signal analysis: a review. Crit Rev Biomed Eng. 1987, 15 (3): 211-36.PubMed Rangayyan MR, Lehner RJ: Phonocardiogram signal analysis: a review. Crit Rev Biomed Eng. 1987, 15 (3): 211-36.PubMed
15.
go back to reference Bulgrin JR, Rubal BJ, Thompson CR, Moody JM: Comparison of short-time Fourier, wavelet and time-domain analyses of intracardiac sounds. Biomed Sci Instrum. 1993, 29: 465-72.PubMed Bulgrin JR, Rubal BJ, Thompson CR, Moody JM: Comparison of short-time Fourier, wavelet and time-domain analyses of intracardiac sounds. Biomed Sci Instrum. 1993, 29: 465-72.PubMed
16.
go back to reference Smith D, Craige E: Influence of the aortic component of the second heart sound on the left ventricular maximal negative dP/dt in the dog. Am J Cardiol. 1985, 55: 205-9.CrossRefPubMed Smith D, Craige E: Influence of the aortic component of the second heart sound on the left ventricular maximal negative dP/dt in the dog. Am J Cardiol. 1985, 55: 205-9.CrossRefPubMed
17.
go back to reference Stein P, Sabbah H, Anbe T, Khaja F: Hemodynamic and anatomic determinants of relative differences in amplitude of the aortic and pulmonary components of the second heart sound. Am J Cardiol. 1978, 42: 539-44.CrossRefPubMed Stein P, Sabbah H, Anbe T, Khaja F: Hemodynamic and anatomic determinants of relative differences in amplitude of the aortic and pulmonary components of the second heart sound. Am J Cardiol. 1978, 42: 539-44.CrossRefPubMed
18.
go back to reference Stein P, Sabbah H, Khaja F, Anbe DT: Exploration of the cause of low intensity aortic component of the second sound in nonhypotensive patients with poor ventricular performance. Circulation. 1978, 57: 590-3.CrossRefPubMed Stein P, Sabbah H, Khaja F, Anbe DT: Exploration of the cause of low intensity aortic component of the second sound in nonhypotensive patients with poor ventricular performance. Circulation. 1978, 57: 590-3.CrossRefPubMed
19.
go back to reference Zhang XY, Zhang YT: Model-based analysis of effects of systolic blood pressure on frequency characteristics of the second heart sound. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 2888-91.PubMed Zhang XY, Zhang YT: Model-based analysis of effects of systolic blood pressure on frequency characteristics of the second heart sound. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 2888-91.PubMed
20.
go back to reference Manecke GR, Nemirov MA, Bicker AA, Adsumelli RN, Poppers PJ: The Effect of Halothane on the Amplitude and Frequency Characteristics of Heart Sounds in Children. Anesth Analg. 1999, 88: 263-PubMed Manecke GR, Nemirov MA, Bicker AA, Adsumelli RN, Poppers PJ: The Effect of Halothane on the Amplitude and Frequency Characteristics of Heart Sounds in Children. Anesth Analg. 1999, 88: 263-PubMed
21.
go back to reference Arnott PJ, Pfeiffer GW, Tavel ME: Spectral analysis of heart sounds: relationships between some physical characteristics and frequency spectra of first and second heart sounds in normals and hypertensives. J Biomed Eng. 1984, 6 (2): 121-8.CrossRefPubMed Arnott PJ, Pfeiffer GW, Tavel ME: Spectral analysis of heart sounds: relationships between some physical characteristics and frequency spectra of first and second heart sounds in normals and hypertensives. J Biomed Eng. 1984, 6 (2): 121-8.CrossRefPubMed
22.
go back to reference Zalter R, Hardy HC, Luisada AA: Acoustic transmission characteristics of the thorax. J Appl Physiol. 1963, 18: 428-36.PubMed Zalter R, Hardy HC, Luisada AA: Acoustic transmission characteristics of the thorax. J Appl Physiol. 1963, 18: 428-36.PubMed
23.
go back to reference Verburg J: Transmission of vibrations of the heart to the chest wall. Advances in cardiovascular physics. Edited by: Ghista DN. Ain Basel: Karger AG, 1989, 84-103. Verburg J: Transmission of vibrations of the heart to the chest wall. Advances in cardiovascular physics. Edited by: Ghista DN. Ain Basel: Karger AG, 1989, 84-103.
24.
go back to reference Wood JC, Barry DT: Quantification of first heart sound frequency dynamics across the human chest wall. Med Biol Eng Comput. 1994, 32 (4 Suppl): S71-8.CrossRefPubMed Wood JC, Barry DT: Quantification of first heart sound frequency dynamics across the human chest wall. Med Biol Eng Comput. 1994, 32 (4 Suppl): S71-8.CrossRefPubMed
25.
go back to reference Durand LG, Langlois YE, Lanthier T, Chiarella R, Coppens P, Carioto S, Bertrand-Bradley S: Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 1. Modelling the heart/thorax acoustic system. Med Biol Eng Comput. 1990, 28 (4): 269-77.CrossRefPubMed Durand LG, Langlois YE, Lanthier T, Chiarella R, Coppens P, Carioto S, Bertrand-Bradley S: Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 1. Modelling the heart/thorax acoustic system. Med Biol Eng Comput. 1990, 28 (4): 269-77.CrossRefPubMed
26.
go back to reference Luisada AA, Singhal A, Knighten V: New index of cardiac contractility during stress testing with treadmill. Acta Cardiol. 1986, 41: 31-9.PubMed Luisada AA, Singhal A, Knighten V: New index of cardiac contractility during stress testing with treadmill. Acta Cardiol. 1986, 41: 31-9.PubMed
27.
go back to reference Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, : American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004, 36 (3): 533-53.CrossRefPubMed Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, : American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004, 36 (3): 533-53.CrossRefPubMed
28.
go back to reference Forjaz CL, Cardoso CG, Rezk CC, Santaella DF, Tinucci T: Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fitness. 2004, 44 (1): 54-62.PubMed Forjaz CL, Cardoso CG, Rezk CC, Santaella DF, Tinucci T: Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fitness. 2004, 44 (1): 54-62.PubMed
29.
go back to reference Halliwill JR, Taylor JA, Eckberg DL: Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol. 1996, 495 (Pt 1): 279-88.CrossRefPubMedPubMedCentral Halliwill JR, Taylor JA, Eckberg DL: Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol. 1996, 495 (Pt 1): 279-88.CrossRefPubMedPubMedCentral
30.
go back to reference Bisquolo VA, Cardoso CG, Ortega KC, Gusmão JL, Tinucci T, Negrão CE, Wajchenberg BL, Mion D, Forjaz CL: Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol. 2005, 98 (3): 866-71.CrossRefPubMed Bisquolo VA, Cardoso CG, Ortega KC, Gusmão JL, Tinucci T, Negrão CE, Wajchenberg BL, Mion D, Forjaz CL: Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol. 2005, 98 (3): 866-71.CrossRefPubMed
31.
go back to reference Piepoli M, Coats AJ, Adamopoulos S, Bernardi L, Feng YH, Conway J, Sleight P: Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol. 1993, 75 (4): 1807-14.PubMed Piepoli M, Coats AJ, Adamopoulos S, Bernardi L, Feng YH, Conway J, Sleight P: Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol. 1993, 75 (4): 1807-14.PubMed
32.
go back to reference Rezk CC, Marrache RC, Tinucci T, Mion D, Forjaz CL: Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. Eur J Appl Physiol. 2006, 98 (1): 105-12.CrossRefPubMed Rezk CC, Marrache RC, Tinucci T, Mion D, Forjaz CL: Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. Eur J Appl Physiol. 2006, 98 (1): 105-12.CrossRefPubMed
33.
go back to reference Debbal SM, Bereksi-Reguig F: Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med. 2007, 37 (3): 269-76.CrossRefPubMed Debbal SM, Bereksi-Reguig F: Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med. 2007, 37 (3): 269-76.CrossRefPubMed
34.
go back to reference Nigam V, Priemer R: A dynamic method to estimate the time split between the A2 and P2 components of the S2 heart sound. Physiol Meas. 2006, 27 (7): 553-67.CrossRefPubMed Nigam V, Priemer R: A dynamic method to estimate the time split between the A2 and P2 components of the S2 heart sound. Physiol Meas. 2006, 27 (7): 553-67.CrossRefPubMed
35.
go back to reference Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E: Negative stress echo: Further prognostic stratification with assessment of pressure-volume relation. Int J Cardiol. 2008, Epub 2007 May 16, 126 (2): 258-67.CrossRefPubMed Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E: Negative stress echo: Further prognostic stratification with assessment of pressure-volume relation. Int J Cardiol. 2008, Epub 2007 May 16, 126 (2): 258-67.CrossRefPubMed
Metadata
Title
Arterial pressure changes monitoring with a new precordial noninvasive sensor
Authors
Tonino Bombardini
Vincenzo Gemignani
Elisabetta Bianchini
Lucia Venneri
Christina Petersen
Emilio Pasanisi
Lorenza Pratali
Mascia Pianelli
Francesco Faita
Massimo Giannoni
Giorgio Arpesella
Eugenio Picano
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2008
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/1476-7120-6-41

Other articles of this Issue 1/2008

Cardiovascular Ultrasound 1/2008 Go to the issue