Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells

Authors: Daniel Mendoza-Villanueva, Wensheng Deng, Cesar Lopez-Camacho, Paul Shore

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

The transcription factor Runx2 has an established role in cancers that metastasize to bone. In metastatic breast cancer cells Runx2 is overexpressed and contributes to the invasive capacity of the cells by regulating the expression of several invasion genes. CBFβ is a transcriptional co-activator that is recruited to promoters by Runx transcription factors and there is considerable evidence that CBFβ is essential for the function of Runx factors. However, overexpression of Runx1 can partially rescue the lethal phenotype in CBFβ-deficient mice, indicating that increased levels of Runx factors can, in some situations, overcome the requirement for CBFβ. Since Runx2 is overexpressed in metastatic breast cancer cells, and there are no reports of CBFβ expression in breast cells, we sought to determine whether Runx2 function in these cells was dependent on CBFβ. Such an interaction might represent a viable target for therapeutic intervention to inhibit bone metastasis.

Results

We show that CBFβ is expressed in the metastatic breast cancer cells, MDA-MB-231, and that it associates with Runx2. Matrigel invasion assays and RNA interference were used to demonstrate that CBFβ contributes to the invasive capacity of these cells. Subsequent analysis of Runx2 target genes in MDA-MB-231 cells revealed that CBFβ is essential for the expression of Osteopontin, Matrixmetalloproteinase-13, Matrixmetalloproteinase-9, and Osteocalcin but not for Galectin-3. Chromatin immunoprecipitation analysis showed that CBFβ is recruited to both the Osteopontin and the Galectin-3 promoters.

Conclusions

CBFβ is expressed in metastatic breast cancer cells and is essential for cell invasion. CBFβ is required for expression of several Runx2-target genes known to be involved in cell invasion. However, whilst CBFβ is essential for invasion, not all Runx2-target genes require CBFβ. We conclude that CBFβ is required for a subset of Runx2-target genes that are sufficient to maintain the invasive phenotype of the cells. These findings suggest that the interaction between Runx2 and CBFβ might represent a viable target for therapeutic intervention to inhibit bone metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ito Y: RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res. 2008, 99: 33-76. full_textCrossRefPubMed Ito Y: RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res. 2008, 99: 33-76. full_textCrossRefPubMed
2.
go back to reference Zhang L, Lukasik SM, Speck NA, Bushweller JH: Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Blood Cells Mol Dis. 2003, 30: 147-156. 10.1016/S1079-9796(03)00022-6CrossRefPubMed Zhang L, Lukasik SM, Speck NA, Bushweller JH: Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Blood Cells Mol Dis. 2003, 30: 147-156. 10.1016/S1079-9796(03)00022-6CrossRefPubMed
3.
go back to reference Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M: Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell. 2001, 104: 755-767. 10.1016/S0092-8674(01)00271-9CrossRefPubMed Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M: Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell. 2001, 104: 755-767. 10.1016/S0092-8674(01)00271-9CrossRefPubMed
4.
go back to reference Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997, 89: 755-764. 10.1016/S0092-8674(00)80258-5CrossRefPubMed Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997, 89: 755-764. 10.1016/S0092-8674(00)80258-5CrossRefPubMed
5.
go back to reference Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR: AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996, 84: 321-330. 10.1016/S0092-8674(00)80986-1CrossRefPubMed Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR: AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996, 84: 321-330. 10.1016/S0092-8674(00)80986-1CrossRefPubMed
6.
go back to reference Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996, 93: 3444-3449. 10.1073/pnas.93.8.3444PubMedCentralCrossRefPubMed Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996, 93: 3444-3449. 10.1073/pnas.93.8.3444PubMedCentralCrossRefPubMed
7.
go back to reference Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ, Coffman JA: CBFbeta is a facultative Runx partner in the sea urchin embryo. BMC Biol. 2006, 4: 4- 10.1186/1741-7007-4-4PubMedCentralCrossRefPubMed Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ, Coffman JA: CBFbeta is a facultative Runx partner in the sea urchin embryo. BMC Biol. 2006, 4: 4- 10.1186/1741-7007-4-4PubMedCentralCrossRefPubMed
9.
go back to reference Yokomizo T, Yanagida M, Huang G, Osato M, Honda C, Ema M, Takahashi S, Yamamoto M, Ito Y: Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Int J Hematol. 2008, 88: 134-138. 10.1007/s12185-008-0121-4CrossRefPubMed Yokomizo T, Yanagida M, Huang G, Osato M, Honda C, Ema M, Takahashi S, Yamamoto M, Ito Y: Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Int J Hematol. 2008, 88: 134-138. 10.1007/s12185-008-0121-4CrossRefPubMed
10.
go back to reference Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS: Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci USA. 2005, 102: 1454-1459. 10.1073/pnas.0409121102PubMedCentralCrossRefPubMed Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS: Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci USA. 2005, 102: 1454-1459. 10.1073/pnas.0409121102PubMedCentralCrossRefPubMed
11.
go back to reference Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB: Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 2003, 63: 2631-2637.PubMed Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB: Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 2003, 63: 2631-2637.PubMed
12.
go back to reference Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005, 25: 8581-8591. 10.1128/MCB.25.19.8581-8591.2005PubMedCentralCrossRefPubMed Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005, 25: 8581-8591. 10.1128/MCB.25.19.8581-8591.2005PubMedCentralCrossRefPubMed
13.
go back to reference Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006, 25: 589-600. 10.1007/s10555-006-9032-0CrossRefPubMed Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006, 25: 589-600. 10.1007/s10555-006-9032-0CrossRefPubMed
14.
go back to reference Shore P: A role for Runx2 in normal mammary gland and breast cancer bone metastasis. J Cell Biochem. 2005, 96: 484-489. 10.1002/jcb.20557CrossRefPubMed Shore P: A role for Runx2 in normal mammary gland and breast cancer bone metastasis. J Cell Biochem. 2005, 96: 484-489. 10.1002/jcb.20557CrossRefPubMed
15.
go back to reference Selvamurugan N, Kwok S, Partridge NC: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem. 2004, 279: 27764-27773. 10.1074/jbc.M312870200CrossRefPubMed Selvamurugan N, Kwok S, Partridge NC: Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem. 2004, 279: 27764-27773. 10.1074/jbc.M312870200CrossRefPubMed
16.
go back to reference Takenaka Y, Fukumori T, Raz A: Galectin-3 and metastasis. Glycoconj J. 2004, 19: 543-549. 10.1023/B:GLYC.0000014084.01324.15CrossRefPubMed Takenaka Y, Fukumori T, Raz A: Galectin-3 and metastasis. Glycoconj J. 2004, 19: 543-549. 10.1023/B:GLYC.0000014084.01324.15CrossRefPubMed
17.
go back to reference Wai PY, Kuo PC: Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008, 27: 103-118. 10.1007/s10555-007-9104-9CrossRefPubMed Wai PY, Kuo PC: Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 2008, 27: 103-118. 10.1007/s10555-007-9104-9CrossRefPubMed
18.
go back to reference Tuck AB, Arsenault DM, O'Malley FP, Hota C, Ling MC, Wilson SM, Chambers AF: Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene. 1999, 18: 4237-4246. 10.1038/sj.onc.1202799CrossRefPubMed Tuck AB, Arsenault DM, O'Malley FP, Hota C, Ling MC, Wilson SM, Chambers AF: Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene. 1999, 18: 4237-4246. 10.1038/sj.onc.1202799CrossRefPubMed
19.
go back to reference Tuck AB, Chambers AF, Allan AL: Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem. 2007, 102: 859-868. 10.1002/jcb.21520CrossRefPubMed Tuck AB, Chambers AF, Allan AL: Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem. 2007, 102: 859-868. 10.1002/jcb.21520CrossRefPubMed
20.
go back to reference Inman CK, Shore P: The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 2003, 278: 48684-48689. 10.1074/jbc.M308001200CrossRefPubMed Inman CK, Shore P: The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 2003, 278: 48684-48689. 10.1074/jbc.M308001200CrossRefPubMed
21.
go back to reference Stock M, Schafer H, Stricker S, Gross G, Mundlos S, Otto F: Expression of galectin-3 in skeletal tissues is controlled by Runx2. J Biol Chem. 2003, 278: 17360-17367. 10.1074/jbc.M207631200CrossRefPubMed Stock M, Schafer H, Stricker S, Gross G, Mundlos S, Otto F: Expression of galectin-3 in skeletal tissues is controlled by Runx2. J Biol Chem. 2003, 278: 17360-17367. 10.1074/jbc.M207631200CrossRefPubMed
22.
go back to reference Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T: Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002, 32: 633-638. 10.1038/ng1015CrossRefPubMed Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T: Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002, 32: 633-638. 10.1038/ng1015CrossRefPubMed
23.
go back to reference Gu TL, Goetz TL, Graves BJ, Speck NA: Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol. 2000, 20: 91-103. 10.1128/MCB.20.1.91-103.2000PubMedCentralCrossRefPubMed Gu TL, Goetz TL, Graves BJ, Speck NA: Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol. 2000, 20: 91-103. 10.1128/MCB.20.1.91-103.2000PubMedCentralCrossRefPubMed
24.
go back to reference Kim WY, Sieweke M, Ogawa E, Wee HJ, Englmeier U, Graf T, Ito Y: Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. Embo J. 1999, 18: 1609-1620. 10.1093/emboj/18.6.1609PubMedCentralCrossRefPubMed Kim WY, Sieweke M, Ogawa E, Wee HJ, Englmeier U, Graf T, Ito Y: Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. Embo J. 1999, 18: 1609-1620. 10.1093/emboj/18.6.1609PubMedCentralCrossRefPubMed
25.
go back to reference Bollerot K, Romero S, Dunon D, Jaffredo T: Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1. Gene Expr Patterns. 2005, 6: 29-39. 10.1016/j.modgep.2005.05.003CrossRefPubMed Bollerot K, Romero S, Dunon D, Jaffredo T: Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1. Gene Expr Patterns. 2005, 6: 29-39. 10.1016/j.modgep.2005.05.003CrossRefPubMed
26.
go back to reference Lee J, Ahnn J, Bae SC: Homologs of RUNX and CBF beta/PEBP2 beta in C. elegans. Oncogene. 2004, 23: 4346-4352. 10.1038/sj.onc.1207669CrossRefPubMed Lee J, Ahnn J, Bae SC: Homologs of RUNX and CBF beta/PEBP2 beta in C. elegans. Oncogene. 2004, 23: 4346-4352. 10.1038/sj.onc.1207669CrossRefPubMed
27.
go back to reference Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T: Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol. 2007, 14: 1186-1197. 10.1016/j.chembiol.2007.09.006CrossRefPubMed Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T: Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol. 2007, 14: 1186-1197. 10.1016/j.chembiol.2007.09.006CrossRefPubMed
28.
go back to reference DeMorrow S, Francis H, Gaudio E, Ueno Y, Venter J, Onori P, Franchitto A, Vaculin B, Vaculin S, Alpini G: Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. Am J Physiol Gastrointest Liver Physiol. 2008, 294: G506-519. 10.1152/ajpgi.00304.2007CrossRefPubMed DeMorrow S, Francis H, Gaudio E, Ueno Y, Venter J, Onori P, Franchitto A, Vaculin B, Vaculin S, Alpini G: Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. Am J Physiol Gastrointest Liver Physiol. 2008, 294: G506-519. 10.1152/ajpgi.00304.2007CrossRefPubMed
29.
go back to reference Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC: Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000, 20: 8783-8792. 10.1128/MCB.20.23.8783-8792.2000PubMedCentralCrossRefPubMed Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC: Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000, 20: 8783-8792. 10.1128/MCB.20.23.8783-8792.2000PubMedCentralCrossRefPubMed
30.
go back to reference Inman CK, Li N, Shore P: Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol. 2005, 25: 3182-3193. 10.1128/MCB.25.8.3182-3193.2005PubMedCentralCrossRefPubMed Inman CK, Li N, Shore P: Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol. 2005, 25: 3182-3193. 10.1128/MCB.25.8.3182-3193.2005PubMedCentralCrossRefPubMed
31.
go back to reference Mengshol JA, Vincenti MP, Brinckerhoff CE: IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001, 29: 4361-4372. 10.1093/nar/29.21.4361PubMedCentralCrossRefPubMed Mengshol JA, Vincenti MP, Brinckerhoff CE: IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001, 29: 4361-4372. 10.1093/nar/29.21.4361PubMedCentralCrossRefPubMed
32.
go back to reference Spencer VA, Sun JM, Li L, Davie JR: Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods. 2003, 31: 67-75. 10.1016/S1046-2023(03)00089-6CrossRefPubMed Spencer VA, Sun JM, Li L, Davie JR: Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods. 2003, 31: 67-75. 10.1016/S1046-2023(03)00089-6CrossRefPubMed
33.
go back to reference Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV: RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine. 2009, 35: 101-111. 10.1007/s12020-008-9129-zPubMedCentralCrossRefPubMed Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV: RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine. 2009, 35: 101-111. 10.1007/s12020-008-9129-zPubMedCentralCrossRefPubMed
Metadata
Title
The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells
Authors
Daniel Mendoza-Villanueva
Wensheng Deng
Cesar Lopez-Camacho
Paul Shore
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-171

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine